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1 Executive Summary 

 
The purpose of this deliverable is to report on the overall progress of the vision-based 
functionalities and competences of HOBBIT for vision-based observation of the user. 
Moreover, the advancements towards the final version of the proposed framework that will be 
featured in PT2 are reported in detail. Given the initial design of our framework for PT1 
(reported in D5.1) and exploiting the outcome of PT1 trials (reported in D1.4) thus following 
the user-centric approach of the HOBBIT project, we present the design and the 
development of new methodologies and visual competencies, partially reported in D5.2, and 
their fusion with respect to the final framework of PT2. 
 
A rich set of HOBBIT visual competences were realized and integrated to the PT1 platform. 
The key modules were of independent motion detection, object detection, body localization, 
person tracking, head pose estimation (WP5: T5.1, T5.2) and action/gesture recognition 
(WP5: T5.3, T5.4). Based on these, additional modules had been designed and developed 
for PT1, providing vision-based functionalities such as user’s fall detection and calculation of 
the 3D direction of the arm during a pointing gesture performed by the user. In Appendix A, a 
relevant publication is attached regarding the integrated PT1 framework. 
 
Given the outcome of the PT1 user trials, a new list of user needs and requirements 
emerged, forming the basis for redesigning and enhancing the existing visual competences 
and for defining new to become available in the PT2 platform. Some of the novel 
methodologies were also presented in D5.2. 
 
In this deliverable, additional novel methodologies,  ongoing developments and integration 
efforts in conjunction with the existing functionalities that are further improved are reported 
towards a revised framework that will be featured in PT2. A thorough experimental 
assessment has been conducted, engaging real users (elderly from our user trials group of 
Hobbit in Greece) in the evaluation process to assess the performance of the novel 
methodologies for which two relevant publications are under development. One relates to 
understanding hand gestures and has been briefly reported in D5.2 and a second one relates 
to a novel framework for understanding the human body pose in 3D based on visual 
observations provided from an RGBD camera. Both publications are under preparation and 
will soon be submitted for publication to international conferences. The technical description 
of the novel technique for human body pose recognition is provided in Appendix B. 
 
 

2 PT1 System 

The initial framework for the vision-based competences of PT1 HOBBIT for user-observation 
has led to the following publication: 
 
  K. Papoutsakis, P. Padeleris, A. Ntelidakis, S. Stefanou, X. Zabulis, D. Kosmopoulos, A.A. 
Argyros, “Developing visual competencies for socially assistive robots: the HOBBIT 
approach”, in Proceedings of Workshop on Robotics in Assistive Environments (RasEnv 
2013), in conjunction with PETRA 2013, Rhodes, Greece, May 28-30, 2013. 
 
The paper is attached to this deliverable in Appendix A. 
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3 PT2 System 

On the way to the final HOBBIT prototype, the outcome of PT1 user trials, the advancements 
on the hardware of the platform and the development of novel methodologies for vision-
based user observation were fused to leverage the redesign and development of the final 
framework that encompasses the visual competences of HOBBIT. 

3.1 User requirements 

The developed HOBBIT competencies regarding vision-based user observation are involved 
in the following user requirements that have been updated and prioritized after the successful 
completion of the PT1 trials. They were reported in D1.4-“Report on the Results of the PT1 
User Trials” forming the basis of developments towards reaching the HOBBIT PT2 system 
 

USABILITY 

INT 10 Intuitive use MEDIUM PRIORITY 

INT 4 Operate with gesture LOW PRIORITY 

 
Regarding the quality criterion of usability, operating the robot with gestures is a solution 
towards the intuitive use of the robot. Therefore, the vision-based user observation system of 
HOBBIT contributes to both requirements based on the gesture recognition interface (GRI) 
developed and integrated in the multimodal user interface (MMUI) of the system. Based on 
outcome of PT1 user trials, the GRI was redesigned to support a set of gestures that are 
more intuitive to use and easy to perform by elderly based on simple and short arm and/or 
finger physical movements.  
 
To achieve this, two novel methodologies has been developed and integrated. The first 
method regards the detection and tracking of hands and fingers based on depth visual data, 
whereas the second regards the gesture recognition method based on the detected and 
tracked 3D physical poses, movements and trajectories of hands and fingers.  
 
Finally, we captured a number of videos demonstrating real HOBBIT users from the target 
group in Greece to perform the required gestures. The qualitative evaluation of those videos 
provided considerable observations and results towards the design of the new set of 
gestures to be supported in PT2, the development of the updated interface and the 
integration process. Moreover the final implementation of the novel methods was adapted to 
achieve optimal performance based on the needs and qualities of elderly, as being observed 
during that process, regarding their physical movements and their notion towards a gestural 
interface system. 
 

CARE 

CARE 1 Detect emergency and 
call for help 

HIGH  PRIORITY 

CARE 6  Operate also at night MEDIUM PRIORITY 

CARE 7  Follow the user (linked to 
learn map) 

MEDIUM PRIORITY  

 
Regarding the quality criterion of care, the detection of an emergency case by the robot in a 
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domestic environment is always of high priority by all participants. To this end, the vision-
based emergency detection module, that was already available in PT1, was redesigned and 
re-implemented.  
 
A more elaborate methodology was developed to support vision-based human detection and 
tracking based on depth-data, resulting a 3D skeletal-model of the observed human body in 
time. Fall detection of a user is then applied based on the outcome of user detection and 
tracking module, to evaluate abrupt changes on the 3D position and orientation of body joints 
in time. The final classification is performed by a novel activity recognition methodology 
based on a discriminative evaluation among a set of predefined fall and non-fall actions. The 
latter method was reported in D5.2. However, the described function only detects a fall in 
case that action is performed, while the user is in the field of view of the robot. To this end, 
we developed a new modality for this function based on a significant technical advancement 
regarding the integration of a thermal sensor on the robotic head. Thus, we combine depth-
aware data and the acquired temperature measurements to detect and segment a human 
body that has already fallen and is lying of the floor in the observed scene. We then sample 
the temperature values at multiple points on the surface of the segmented scene area and 
classify the observations to either a human body or not relevant obstacle lying in front of the 
robot. In case a human body is detected, a relevant signal is sent and handled by the 
emergency function. 
 
The integration of the medium priority “follow the user” function is under development, 
involving the navigation and the human detection and tracking modules of the system. The 
novel vision-based human detection and tracking method developed for PT2, provides 
detailed information on the 3d position (position, orientation of the body center) of any 
observed user in the field of view of the camera with respect to the robotic platform. To this 
end, the integrated function will be finalized during the PT2 lab trials. 
Finally, the described vision-based functions and methodologies rely on depth-aware visual 
data acquired by an infrared camera. Therefore, the quality of the acquired data is not 
affected by the illumination conditions in the domestic environment enabling the seamless 
operation of these functions also during the night. 
 

ENTERTAINMENT 

ENT 2 Fitness HIGH 

 
The HOBBIT Fitness application will offer exercises that will be presented to the user 
sequentially through a virtual trainer that will be guiding the user throughout the fitness 
program. It constitutes a game-like application towards physical wellbeing of the user that 
affects a great deal the overall quality of life of any person. 
 
The application will be using the novel methodologies developed for HOBBIT PT2 regarding 
gesture recognition and human tracking system, in order to detect and display the precise 
movements of the user based on a 3D skeletal model, through the avatar, while he or she is 
executing an exercise. Both verbal and visual feedback will be provided to the user in order 
to correct and enhance the performance of any selected exercise. 
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3.2 Hardware related to vision-based human observation 

 
A new robotic head has been designed and developed for PT2 Hobbit (by BDR1 project 
partner). A brief description of the main hardware module for vision-based human 
observation is reported below, as the full description of the hardware components and its 
technical details will be reported in WP7-related deliverables. 
 
An RGB-D sensor (Xtion Depth Sensor2) is the main visual sensory equipment of the new 
robotic head, as in PT1. Moreover, the same RGB-D sensor is also mounted near the base 
of the robot, as shown in Figure 1. An important advancement regards the integration of a 
thermal sensor that is able to provide temperature measurements of a targeted (single-pixel) 
area of the observed scene. The thermal sensor is aligned and calibrated to the optical axis 
of the depth camera of the RGB-D sensor, thus it always targets and samples the 
temperature of the central pixel of an acquired depth frame. The new robotic head also 
provides an elaborate neck mechanism that enables smooth and precise pitch and yaw 
rotations (2 degrees of freedom) with respect to the robot body. 
 
The combination of the two newly introduced hardware components, enable the active 
control of the robotic head in order to sample temperature measurements in different areas 
of the scene. It is a crucial technical advancement that enhances the functionality of various 
vision-based modules for human observation, described in the following sections. 

Head
RGB-D sensor

Thermal sensor

Body RGB-D 
sensor

 
Figure 1: A 3D model of the PT2 robotic platform showing the placement of the cameras with 
respect to the robot body. 

 

3.3 Vision-based user observation framework 

3.3.1 System overview 

Figure 2 presents an overview of the modules for vision-based human observation and their 
interconnection. A detailed analysis of these components is presented in the remainder of 
this section. 
                                                
1 Blue Danube Robotics: http://bluedanuberobotics.at/ 
2 http://www.asus.com/Multimedia/Xtion_PRO_LIVE 
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Conceptual overview 

Fitness application
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detection and 

tracking

Gesture recognition

Vision-based 
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Head RGB-D 
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Active control of the 
robotic head

(2 DoF rotations)

3D Hand/Finger
detection and 

tracking

 
Figure 2: A graphical overview of the main modules of the vision-based user observation 
framework. 

 

Technical ROS-based Overview 

 
Figure 3: Overview of the ROS-based services(rectangles) and topics(ellipsoids) of the PT2 
Hobbit framework for vision-based human observation. 
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Figure 4: Snapshots captured from the visualization tool RViz of ROS, illustrating the output of 
the vision-based user observation framework and its modules. 

 
Figure 3 provides a snapshot of the ROS graph illustrating the ROS services and topics 
relevant to our vision-based framework for user observation. Figure 4 provides snapshots of 
the ROS RViz GUI, where computed and published information from vision-based modules is 
fused and illustrated in real-time. More specifically, RGB-D data acquired by the head sensor 
are integrated in a point cloud that also carries colour information of the observed scene. 
Moreover, the results of the human body detection and tracking module are illustrated. Those 
refer to the 3D positions (represented by yellow lines) and orientations (represented by RGB 
axes) of the body joints connected to the detected body center joint (pink arrows). Moreover, 
the computed 3D bounding box of the detected and tracked human body is also computed 
and rendered in Figure 4. 
 

3.3.2 System Analysis 
 

3.3.2.1 RGB-D data acquisition 

    
Acquisition of visual sensory data is the cornerstone of all vision-based modules of Hobbit 
system. To this end, the RGB-D data acquisition module was redesigned and implemented 
for the need of PT2 to interface the RGB-D sensors of Hobbit (Xtion Depth Sensor) and 
provide depth and colour data of various types and specifications to the rest of the modules. 
 
We rely on the newest version of OpenNI 2, because during the early stages of Hobbit PT1 
there where many stability and technical problems using multiple input devices on hosts 
sharing the same USB resources, and many internal problems using the OpenNI1 driver. 
Various technical advancements have been achieved to convert to any required type of the 
acquired data in order to be consumed by other modules, to handle internal errors and serve 
efficiently all system modules in real-time, with the minimum possible overhead and usage 
on the limited computational resources of the platform. 
 
Thermal sensory data are acquired by the software system module that controls the H/W 
components of the new robotic head and neck, developed by the BDR project partner, and 
delivered to the rest of the modules. 
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3.3.2.2 3D Human Body Detection and Tracking 

 
Two methodologies are available in Hobbit PT2 for real-time vision-based user observation. 
A novel methodology is introduced for 3D upper human body detection and tracking. The 3rd 
party methodology utilized in PT1 for full 3D body detection and tracking is preserved in the 
new framework as a fall-back method. 
 

Full Human Body 3D Detection and Tracking 

We preserve the 3D human body detection and tracking, provided in OpenNI2 API, in our 
framework for PT2 as a fall-back method. It provides 3d full body detection and tracking for 
multiple users. Relevant details were provided in D5.1. 

 
Upper Human Body 3D Detection and Tracking 

A novel method is introduced for the needs of Hobbit, which is able to perform upper body 
detection and tracking of multiple humans based on depth data. Our model-based method is 
also able to detect and track part models of the upper body in real-time and handle self-
occlusions among body parts. The developed method supports upper body detection and 
tracking in order to be able to detect and track multiple standing or seated users in an 
indoors environment. A detailed description of the method and qualitative experimental 
results are provided in Appendix B. The method will soon be submitted for publication in an 
international conference.  Although the current implementation supports upper body 
detection and tracking, there is no inherent limitation that prevents it from being used for full 
body detection and tracking.  
 
 

3.3.2.3 Face Detection & Tracking 

A 2D colour-based face detection and tracking method is integrated in our framework to 
enhance detection and tracking performance of human body detection and tracking 
methodologies. Hobbit will encounter real-life scenarios in the domestic environments of 
elderly; therefore various ambiguous cases may occur that may result in false positives. As 
an example, we refer cases where only the face of a user is visible while the body is 
occluded, or its pose is not able to be detected due to the surrounding structure in the scene. 
The face detector relies on RGB data and is quite robust in illumination changes and 
appearance of faces, thus it is not relying on acquired depth data. Integrating individual face 
and body detection and tracking results, help to alleviate false positives of false negative 
results, boosting the performance of both methods.To this end, if a human face is detected 
by the face detector with high confidence, the human body detector is redirected to search in 
that location for the head of the user, as a starting point for detecting the upper body. 
Moreover, body detection results enhance the performance of face detector to search nearby 
for faces.  
 

3.3.2.4 Detection & Tracking of Hands & Fingers for Gesture Recognition 
 

A novel framework is proposed that integrates an efficient methodology for the robust 
detection and tracking of human hands and fingers based on an RGBD camera and the 
recognition of hand postures and gestures at real-time. 

http://www.hobbit-robot.eu/


HOBBIT Deliverable 5.3  “Integrated perception of humans in the HOBBIT environment”     

 www.hobbit-robot.eu 13/23 

Based on the outcome of PT1 user trials and user studies, existing upper body 
gestures/postures had to be replaced with more intuitive hand/finger-based gestures that can 
be performed more easily by elderly users. The proposed framework enables this capability 
for PT2 as we were able to redesign the gesture recognition interface to support a two-level 
interaction scheme regarding mid-range human robot interaction based on upper body 
postures/gestures and short-range human-robot interaction based on newly introduced 
hand/finger-based gestures. The two levels of interactions support hand or arm 
gestures/postures that trigger different robot commands.  
Table 1 describes the assignment of the chosen physical movements to robot commands. 
Moreover, Figure 5 illustrates the physical movements required by the new gestural interface 
of PT2. 
 
The novel methodology for 3D detection and tracking of hands and fingers relies on depth 
data, geometrical primitives and minimum spanning tree features of the observed structure of 
the scene in order to classify between hand and non-hand structures in the foreground. In 
Figure 6 relevant information is visualized. Upon detection of the hand (palm and fingers), 
the temporal trajectories of their 3D positions are analysed towards the recognition of hand 
postures and gestures. 

 

Table 1: Set of predefined hand gestures and upper body postures implementing the 
gestural interface of HOBBIT PT2. 

User 
Command 

Gesture/Posture Robot command 

Usage in  
PT2 

Scenarios 
(listed in 

D1.6) 

 

Yes 

Thumb up 
-palm closed  
(close-up- range interaction) 

Provides a positive 
response to 
confirmation dialogues. 
YES gesture. 

All 

 

No 

Index finger up and waving-palm closed 
(close-up- range interaction) 

Provides a negative 
response to 
confirmation dialogues. 
NO gesture. 

All 

 

Cancel task 

Both open palms towards the robot 
(close-up-range or normal- range interaction) 

Terminates an on-
going robot 
behaviour/command. 
 

All 

 

Pointing 

Extended arm pointing a direction in 3D space 
 

Pointing to an object or 
place in 3D  space 
using an extended arm 
for 2-3 seconds 

 
IV. Pick up 

an 
(unknown) 

object 

 

Reward 

Circle gesture 
-open palm circular movement towards the 
robot (at least one complete circle is needed) 
(close-up- range or normal- range interaction) 

Rewards the robot for 
an accomplished 
action/task. 

 
All 

Emergency Cross hands pose (normal- range interaction) Signifies an emergency 
situation. 

II-
Emergency 
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The performance of the developed method has been tested based on a large number of 
videos. Eight of them were recorded while colleagues at FORTH were performing all the 
gestures. This set of videos not totally representative of the real life use cases as the users 
were young, healthy adults with high exposure to and experience with technology. 
Nevertheless, it formed a very good basis for fine tuning several algorithmic details towards 
delivering a robust and efficient hand gesture recognition component.    
 
A second set of videos was recorded showing elderly users to randomly perform the 
predefined gestural vocabulary and some random irrelevant movements, in order to assess 
the performance rate of our methodology in real conditions and further improve it. Some 
representative snapshots of the results are shown in Figure 7. 
The reported methodologies have already been implemented and integrated in Hobbit PT2 
MMUI. 
 

 
Figure 5: The set of hand gestures supported by the MMUI of PT2. (a) YES and (b) NO gestures 
are utilized in confirmation dialogues. In (c), the cancel command is demonstrated. It can be 
used for close-up- and medium-range interaction. In (d) the pointing gesture indicates an 
unknown object on the floor to be picked up. In (e), a reward gesture is performed to thank the 
robot for an accomplished task (one or more circles). (f) A top priority gesture that a user can 
use to trigger the emergency task (triggered while releasing the arms-moving them downward). 
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Figure 6: 3 Intermediate results of the novel hand/finger detection and tracking method and 
gesture recognition method introduced for the new gestural interface of PT2. First row: 
detection of the wrist, palm, fingers and fingertips of the two hands. Rows 2-4: Recognition of 
three hand-based gestures (Stop/cancel, Yes, No) and their corresponding internal skeletal-
structures and features detected and tracked based on depth data. In the right column, purple 
lines indicate skeletal structures of the detected arm and hand, purple circle indicates the 
detected and tracked palm position. 

 

 
Figure 7: Snapshots of real user s of Hobbit, from the target group in Greece are illustrated in 
the images. Hands/fingers detection and tracking was performed, while gesture and posture 
recognition of the predefined gestural vocabulary of PT2 was active. The resulting events upon 
successful recognition of the gestures and postures are superimposed on the images 
indicating the location of the event and its keyword in coloured circle and text, respectively. 
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3.3.2.5 Vision-based Emergency Detection 

 
One of the most prominent and top priority functions of Hobbit based on the assessed user 
needs and requirements refers to the vision-based emergency detection in case a user falls 
on the floor, while been observed by the robot, or the detection of a user lying on the floor 
after a fall in the domestic environment while outside of the robot field of view. Moreover, the 
gesture recognition module can also set an emergency alert upon successful recognition of 
the intentional gesture for help performed by the user. 
 
Vision-based emergency detection is constantly running in the background, while the robot is 
active during all robot tasks, except from object detection and recognition tasks. Moreover, 
its published events are of top priority suspending all active robot tasks. 
 

Fall detection 

Methodology: We rely on acquired depth visual data and results of the 3D human body 
detection and tracking module to recognize activities related to fall from standing position.  
 
In order to detect and recognize activities related to a user fall, we select 8 joints on the 
human body, which are the head, shoulders, ankles, body centre and knees. The features 
used to recognize a fall comprise of the 3D coordinates of the 8 joints with respect to the 
body centre and normalized with respect to a constant parameter (the relative distance 
between the head and body centre), their velocity, the normalized 3D Euclidean distance of 
the head to the floor plane and the relevant velocity in each frame. These quantities form a 
feature vector in each frame, representing the human body configuration and velocity over 
time. Given a set of consecutive frames and the relevant feature vectors, the body 
configurations they represent can be seen as a body gesture or activity.  
 
We make use of our novel method on segmentation and classification of human body-based 
gesture and activities, presented in D5.2, in order to classify between fall and non-fall events.  
 
We train our system offline based on relevant pre-processed fall activities capturing a large 
variety of events of different velocity and direction of fall. The size of the body and the 
duration of the fall event are irrelevant, as our method can successfully recognize 
gesture/activities of varying duration.Figure 8 illustrates a fall event in four frames that is 
recognized as a fall activity. 
 
We can also train our system to recognize a variety of activities relevant to a body fall or 
simple body postures that refer to emergency conditions, as demonstrated in Figure 9. 
 

Detection of a user lying on the floor 

The probability to observe a user falling while been observed is not high. Moreover, fall 
detection may fail due to unpredictable reasons even if a huge number of training cases have 
been provided to the system during offline training.  
 
To ensure that the emergency detection functionality of our platform is able to capture more 
realistic emergency events, it should also be able to detect a user lying on the floor. Thus, 
HOBBIT will be able to create an alarm signal even in the case of a user fall that did not 
occur while the platform was observing the user. 
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Figure 8: A fall event is illustrated based on four consecutive frames. Our features rely on the 
relative 3D joint positions, head-floor distance and their relevant velocities based on the 
skeletal body model that is also illustrated. 

 
 

  
Figure 9: A body motion/activity relevant to a body fall that can also be recognized as 
emergency fall. 

   
Typically, a fallen user has non-standard body configurations exhibiting severe self-
occlusions and, possibly, object-body occlusions. This makes it very challenging (if not 
impossible) to effectively recover the skeleton joints, especially in a limited CPU environment 
such as the one of HOBBIT.  This, in turn, calls for a different approach to the problem that 
enables robust operation and acceptable performance.To achieve this, we capitalize on the 
thermal sensor that is available on the robotic head of PT2 HOBBIT that provides a new 
modality and immediate visual cue towards human observation. 
 
Methodology: We take advantage of the calibrated temperature measurements provided by 
the thermal sensor of the new robotic head. Measurements are provided for the central pixel 
of each acquired depth frame. The second building block for observing a body lying on the 
floor is plane segmentation which utilizes a custom implementation of a RANSAC-based 
plane segmentation algorithm. The customization done is omitting known outliers in areas of 
the image that are occluded by the hull of the robot, and comparing the plane orientation to a 
known “expected result” since we know the height of the robot and pitch of the head. Having 
a large contiguous blob after segmenting out the floor plane, multiple heat readings are 
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acquired on the surface of the detected blob and in its surrounding area by moving the 
robotic head, thus the optical axis of the thermal sensor, appropriately. Temperature values 
are collected and evaluated. Values between 30 and 37 degrees Celsius of the detected and 
segmented object qualifies as a detected body which causes the emergency module to emit 
an alert (G_FALL) message to the rest of the framework signifying the emergency. 
 
An illustrated example of this process is provided in Figure 10. 
 

  

 
Figure 10: Scenario case of lying user detection during lab tests. The acquired pair of RGB and 
depth frames illustrated in the top row, form the input to the plane estimation method resulting 
an estimate for the ground floor. Visual information over the estimated floor plane is extracted 
(non-black colour). Then by segmenting the central contiguous blob of the scene (bottom 
right), the main object on the floor is segmented. The robotic head moves purposefully to steer 
the thermal sensor towards this object and  ten temperature measurements are acquired on its 
surface. Based on these measurements, the contiguous blob is classified as a human or as an 
unknown object. 

 

3.3.2.6 Fitness application 

 
Vision-based guided physical exercising of a human is an emerging and prominent concept 
of Human Computer Interaction and Computer Vision disciplines. 
 
Our goal is to realize the concept in view of HOBBIT PT2 as a human-robot interface, and 
develop a relevant game-like application that will promote and help elderly users to exercise 
improving their physical condition, in their own domestic environment on a daily basis. 
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A use case scenario based on a non-invasive setting involves a user performing a set of 
predefined physical exercises without using any markers or other wearable devices, while 
been observed by a visual sensor placed at a distance. In our case, the visual sensor is 
mounted on the robot’s head. The platform is placed at a distance from the user in the 
domestic environment observing the user frontally. The user can be observed while 
performing exercises in a seated or standing pose. 
 
The design and development of the main concept and the UI part of the fitness application is 
described in detail in D3.2 due to PrM30. We report on the back-end of the application 
regarding the vision-based observation of human body and the comparison between body 
configurations, also called fitness sensor module in the analysis. 
 
Requirements: We consider a module of a vision-based system that is able to perceive the 
presence of a human body, estimate its pose for each frame and precisely track its body 
parts of interest and their trajectories based on visual information. Moreover, the module 
should be able to map those poses and trajectories to an internal representation, therefore 
compute a body configuration per frame. The same representation is also utilized to model 
an exercise, as a time series of body configurations (trajectories of body parts) reflecting the 
development and transition of the required physical movements over time. 
Subsequently, a metric is defined, in order to compare an online computed body 
configuration based on visual data and a single body configuration that is part of a predefined 
exercise. 
 
Methodology: The developed system module for vision-based 3D human body detection 
and tracking, described in section 3.3.2.2, fits to those requirements. Moreover, the 3D 
skeletal-based body model used to estimate body pose and track its body parts also provides 
the required representation to model any observed body configuration for each frame. 
 
We define a common exercise model for the fitness application that incorporates the 
following data fields: 

- A collection of sequential 3D body configurations that correspond to manually 
selected key-point configurations of the physical movements for an ideal execution of 
the exercise. 

- A unique label. 
- The expected number of iterations of the complete exercise. 
- Maximum allowed time intervals between consecutive key-point body configurations 

of an exercise. 
- Maximum allowed duration for a complete exercise to be executed. 

We need to mention that the type of supported exercises and the key-point body 
configurations of each of them are manually selected. Physiotherapists and physical trainers 
are actively involved in the design and development process of the application as experts. 
They are able to indicate a valid set of appropriate, meaningful and safe body configurations 
to be considered as key-points for an exercise and the transition between them with respect 
to physical conditions of elderly. Moreover, reasonable maximum allowed time intervals 
between consecutive key-point body configurations are also set by the experts. 
 
An example of a simple fitness exercise, that is extending the arms from a seated idle body 
pose, is demonstrated in Figure 11, based on its key-point body configurations. 
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Figure 11: An example fitness exercise is demonstrated based on its three key-point body 
configurations. Starting from a seated idle pose, the user is guided to extend his/her arms 
horizontally up to the shoulders or lower and move back to the initial idle pose. 

 
A pose-similarity function is defined to evaluate the proximity between two body 
configurations, given the 3D positions and angles of the tracked body joints with respect to 
the detected body center, extracted by the human detection and tracking module of our 
framework.  
 
The similarity score is defined based on a weighted sum between the sum of absolute 3D 
Euclidean distances and the sum of absolute differences of angles between corresponding 
joints given that the two body centers are aligned. It is maximized in case the 3D positions 
and angles of the tracked joints coincide with the corresponding joints of the exercise model. 
Moreover, the absolute differences between corresponding body joints is stored for 
subsequent use. 
 
We note that the defined similarity human posture similarity metric is invariant to different 
user body sizes and dimensions as joint positions are normalized with respect to the body 
center and the relevant body dimensions. 
 
Our final goal is to assess the similarity between two activities in terms of body configurations 
provided by the exercise model to be executed, given as input by the GUI module of the 
application, and the time series of body configurations computed by the vision-based user 
observation module. 
 
To this end, we define an activity similarity function to calculate a confidence value 
reflecting which of the observed body configurations were highly similar to which of the 
exercise key-point body configurations, how similar they were based on the pose-similarity 
score and if the temporal order of those matches follow the requirements set by the exercise 
model. The time intervals between matched body configurations are also calculated and 
taken into account. 
 
The activity similarity score for an exercise and the time intervals between matched key-point 
configurations constitute the output of the developed module. Moreover, we calculate 
statistics on the time series of absolute residuals between corresponding skeletal joints in 
order to identify those joints that were not matched properly to the positions of the model. 
Therefore, it is assumed that those joints are mainly responsible for the possible failure to 
perform appropriately the intended exercise.  
 
The output information facilitates the UI controller module of the application to select and 
provide appropriate instructions and prompts to the user as guidance or feedback in order to 
repeat an exercise and learn it successfully. 
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3.3.2.7 Locate the user scenario 

 
Localizing the user in the domestic environment is the cornerstone of all robot scenarios that 
rely on user perception in order to act and/or adapt robot’s behaviour accordingly. The 
relevant system module is part of the framework designed and developed to model robot’s 
behaviour, learning and adaptation capabilities. The relevant information on the 
implementation and documentation of the corresponding system modules is reported in 
deliverable D3.2  
 
We mention its interconnection with the vision-based framework for user observation that 
provides the relevant information based on the integrated output of face and human body 
detection and tracking modules. The vision-based extracted information regards a 
confidence value on user’s presence in the observed scene and the relative 3D position of 
the detected and tracked body centre with respect to the coordinate system of the robot base 
for each acquired frame. 
 

4 Conclusions 

This deliverable presented our work towards the advancements on the vision-based user 
observation competencies of the final HOBBIT platform.  All methodologies described in D5.1 
that were realized in PT1 have been replaced with novel ones, developed and adapted in 
view of the PT2 platform specifications (reported in D1.6) and the outcome of  PT1 user trials 
(reported in D1.4).  The novel methodologies refer to human body detection and tracking, 
hand/finger detection and tracking, gesture recognition and activity recognition based on 
RGB-D visual data (some of them also reported in D5.2). Moreover, additional functionalities 
were added in PT2 regarding the detection of a lying user on the floor using the integrated 
thermal sensor in the robotic head and an updated, more elaborate method to enhance fall 
detection. The fitness application and the follow-the-user function are also realized in PT2 
and heavily rely on vision-based user observation functionality. Integration efforts are 
ongoing and we will continue with tests of single robot functionalities in the lab and later on 
user tests before we will enter the trial phase. 
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ABSTRACT 
In this paper, we present our approach towards developing visual 
competencies for socially assistive robots within the framework of 
the HOBBIT project. We show how we integrated several vision 
modules using a layered architectural scheme. Our goal is to 
endow the mobile robot with visual perception capabilities so that 
it can interact with the users. We present the key modules of 
independent motion detection, object detection, body localization, 
person tracking, head pose estimation and action recognition and 
we explain how they serve the goal of natural integration of robots 
in social environments. 

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding] 3D/stereo scene 

analysis, Shape  

I.2.9 [Robotics] Commercial robots and applications 

General Terms 
Algorithms, Measurement, Performance, Design 

Keywords 
Tracking, action recognition, object detection, head pose 
estimation 

1. INTRODUCTION 
 
In this paper we present the design concept and the methods 
developed to realize the first robotic prototype (PT1) of the 
HOBBIT project1. HOBBIT aims to develop a robotic platform, 
which will observe visually the users in indoor environments and 
interpret their actions, so that assistive services can be provided. 
The development involves a rich set of robot functionalities for 
human detection, localization, 3D human tracking and action 
recognition that capacitates the interpretation of important aspects 
of the user’s presence, behavior and intentions. The ultimate goal 
is to develop effective mechanisms for visual perception and 
interaction with the users. This interaction is intended to 
contribute towards the involvement of a mutual care relation and 
bonding between the user and the robot, which constitutes a 
fundamental concept in the HOBBIT project.  
In the next section we briefly present related efforts concerning 
projects funded by the EU as well as by the NSF. In section 3 we  
                                                                 
1 http://www.hobbit-project.eu 

 
Figure 1: The first robotic prototype (PT1) of the HOBBIT 

project. 

give an overview of the proposed architecture that enables the 
robot to perceive humans. Section 4 describes the key components 
that were developed so far, i.e., independent motion detection, 
object detection, body localization, tracking, head pose estimation 
and human action recognition. Section 5 gives an overview of our 
future plans and section 6 concludes the paper. 
 

2. RELATED PROJECTS 
 
The development of mobile robots that will be able to provide 
assistive services has been a goal pursued by several funded 
projects. Some of the most representative ones are described in 
the following.  

The KSERA (Knowledgeable SErvice Robots for Aging) 
project [6] aims to develop a socially assistive robot to help 
elderly people. The Nao robot [7] was utilized to enable human-
robot interaction, employing various computer vision methods 
regarding face tracking, motion tracking and head pose 
estimation. Face tracking enables Nao to detect the location of the 
user’s face and direct its head towards the user, while motion 
tracking enables it to direct its gaze away from a person to other 
objects or to a random direction for a certain amount of time 
during communication.  
The DOMEO (Domestic robot for elderly assistance) project 
[8] focused on the development of an open robotic platform for 
the integration and adaptation of personalized homecare services, 



as well as on the cognitive and physical assistance in an AAL-
enabled home environment. A novel human detection system has 
been proposed in the scope of this project, utilizing a laser based 
leg detector, a body detector and an upper-body detector, both 
based on vision. Using a  grid  based  approach  and Gaussian  
Mixture  Models  (GMMs),  their  output  probabilities  are  fused 
to provide efficient human detection. Upon detection, the robot 
may engage itself in a dialogue with a potential speaker exploiting 
rich vision-based extracted information regarding face detection 
and tracking, as well as mouth and lips detection and tracking.  
The COGNIRON (Cognitive Robot Companion) project [9], 
[10] focused on the development of a robot whose ultimate task 
was to serve humans as a companion in their daily life. It aims to 
adapt robot behavior in changing situations and for various tasks. 
One of the project’s prominent objectives regards the detection 
and understanding of human activities. Detection and 
understanding of human activity explores modeling, observation 
and semantic interpretation of human activities in the vicinity of 
and in interaction with the robot companion. The focus was set on 
non-verbal characteristics such as position, movement and pose. 
For humans in the far field, a part-based people detection 
algorithm has been developed based on omnidirectional camera 
images to track their location and motion as a whole. A mid-range 
skeleton based 3D human motion tracking approach has also been 
developed based on a geometric body model. It relies on depth 
images acquired using a time-of-flight camera and laser scanner 
data. Thus, comprehensive perception of humans can be achieved 
in terms of articulated 3D body tracking and pose estimation.  
The CompanionAble project [13] aimed to provide the synergy of 
robotics and ambient intelligence technologies and their semantic 
integration to provide for a care-giver's assistive environment 
supporting the cognitive stimulation and therapy management of 
the care-recipient. A set of key services of the envisioned robotic 
platform involved day time management, cognitive stimulation / 
therapy management, detection of critical situations, video-
conferencing and situation awareness. Vision and laser sensors are 
considered and fused to perform vision-based human body 
observation and pose analysis, fall detection and activity 
recognition of care-recipient at any time. Moreover, long-term 
behavior pattern analysis is supported.  
The SRS (Multi-Role Shadow Robotic System for Independent 

Living) project [11] was based on the Care-O-Bot robotic 
platform [12]. Human motion tracking and analysis was a vital 
part of the perception mechanism of the system enabling the robot 
to recognize and trace user in the environment. The SRS robot is 
able to observe the location, pose and actions of a human in order 
to deduct information about his movements, gestures and 
intentions. A vision-based mechanism, called Human Presence 
Sensor Unit, is considered involving a camera with 
multidirectional view, human motion algorithms based on 
acquired 3D information and basic gesture recognition algorithms. 
Care-O-Bot [13] is a long term project, developed by Fraunhofer 
IPA and is already in the third generation of the platform. It 
regards a mobile robot assistant able to assist human in their daily 
life. Providing open-source interfaces and a rich set of visual 
sensors, including stereo cameras and a time-of-flight sensor it is 
utilized by many other research projects as a base to develop 
advanced technologies and application regarding social assistive 
robots. Accompany [17] is such a project, where an elaborate  

 
Figure 2: Overview of the system architecture for human 

observation realized for the HOBBIT (better viewed in color). 

The green modules correspond to data acquisition, the red 

ones to searching for humans the blue to human motion 

capture and analysis and the purple to action recognition. 

 
algorithm for localization of humans using ambient cameras and 
robot-mounted Laser Range Finders has been developed. 
Significant research efforts have also been conducted worldwide 
on socially assistive robotics by many research laboratories based 
on several projects and robotic platforms. The Healthcare robotics 
laboratory [18] at Georgia Institute of Technology has developed 
efficient methods for human motion analysis and object detection 
applied to a variety of home assistive robotic platforms.  
The HERB robot [19] is developed in CMU as an autonomous 
mobile manipulator that performs useful manipulation tasks in the 
home. A rich source of robotic platforms and state-of-the-art 
methodologies related to assistive social robots are provided by 
USC Interaction Lab [20] and ASORO lab at A*Star [21].  
The HOBBIT project aims to develop a socially assistive robot for 
elderly based on a rich set of efficient visual perception 
capabilities. These will rely, among others, on methods for 3D 
image/scene analysis, 3D localization of humans and modeling, 
3D tracking of human hands and body, posture/gesture and 
activities recognition, face recognition, 3D head pose and gaze 
estimation based on RGB-D data and object detection. 
We aspire to integrate the aforementioned methodologies in a 
unified vision-based framework that will set the robot able to 
observe visually the users in indoor environments and interpret 
their actions. The outcome of our framework will enable HOBBIT 
to enhance the overall performance and the set of capabilities and 
applications of existing robotic platforms and the quantity and 
quality of assistive services that can be provided in terms of 
cognitive and physical assistance in an Ambient Assistive Living 
home environment. The architecture of our vision-based 
framework is described in the following section. 
 

3. ARCHITECTURE 
 
The organization of the basic components for human observation 
for the first prototype (PT1) of the HOBBIT project is illustrated 
in Figure 2. Several system parts realized in the current 
implementation of the visual human observation framework of 
PT1, rely on software components by the OpenNITM API [4]. The  

http://www.aal-europe.eu/calls/funded-projects-call-1/domeo/view
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Figure 3: (a-b) An RGB image and the corresponding depth 

image. Cold/bluish colors correspond to smaller depth values, 

while warm/red colors to objects further away. Unreliable 

depth values are set to a zero distance to the sensor and 

represented with pitch blue. (c) A 3D reconstruction of the 

scene from an arbitrary view, generated based on that RGB-D 

image pair. For every valid depth measurement, a 3D point is 

estimated and associated with the corresponding RGB value. 

Black areas are due to missing depth data, either due to the 

sensor's limited FOV or due to noise. 

 
Human observation system of PT1 relies on an RGB-D sensor 
(Kinect [14] or XtionPro Live  [15]). Since the cameras provide a 
limited field of view that is insufficient for full or upper human 
body observation, the sensor is attached to a tilt motorized 
mechanism to enable active exploration of the scene in any 
direction facilitating vision-based functionalities of the robot. 
Panning of the sensor is executed by rotating the robot on the 
spot. A control mechanism was developed to adjust the pose of 
the sensor to a certain configuration at real-time according to the 
needs of the system phase that is being executed. 
 

4. COMPONENTS 

4.1 Independent motion detection 
We propose a method for detecting motions that are independent 
of the camera. The scene is captured using an RGB-D sensor. At 
any time, an object may move in the scene while the sensor is 
moving as well. The estimation of the dominant motion allows for 
employment of ego-motion estimation and camera stabilization, 
which in turn leads to the detection of motion that is independent 
to the sensor's motion. These techniques provide vital input and 
boost the robustness of algorithms applied in robotics including 
visual odometry, scene understanding, human detection and 
action recognition when the employed sensor is mounted on a  

 

 

 
Figure 4: Correspondence establishment of 3D points between 

different scene views. Top-left: SIFT features are extracted on 

the RGB image. Top-right: The SIFT features are associated 

with the depth image so that a depth value for each SIFT 

feature is identified. Middle: SIFT features with bi-linearly 

interpolated depth values are indicated with a purple circle. 

Bottom: The establishment of correspondences between two 

different RGB-D pairs is performed by employing KNN 

similarity matching of the descriptors of SIFT features with 

valid 3D measurements. 

 
moving platform. The proposed method consists of the following 
steps: 

 Establishing correspondences of 3D points 
 Dominant motion estimation 
 Independent motion detection 

The proposed method uses a Kinect [14] or an XtionPro Live [15] 
RGB-D sensor to acquire a temporal sequence of RGB and depth 
image pairs. The sensor is calibrated to allow the association of 
the RGB and the depth values. We use the sensor's intrinsic 
calibration parameters to estimate a 3D point in Euclidian space 
for every valid pixel of the depth image, and subsequently 
associate it with the corresponding pixel on the RGB image 
(Figure 3). The first allows various 3D representations of the 
scene within the sensor's field of view (FOV). The second allows 
the establishment of correspondence of 3D points among point 
clouds of different views of the scene, via well-established 
approaches applied to conventional cameras. Once 
correspondences between 3D points of two different views of the 
same scene are established, we are able to estimate the dominant 
3D motion between the two views.  



4.1.1 Establishing correspondences among 3D 

points 
In order to estimate the dominant 3D motion that best describes 
the relation between two point clouds generated from two 
different RGB-D image pairs, 3D matches between these point 
clouds need to be established. Such correspondences are 
established by employing feature extraction and matching 
techniques on the RGB images. More specifically, SIFT features 
are detected and matched on each RGB image following the 
implementation of [1]. We then estimate the corresponding 3D 
points taking into account that the image coordinates of the 
features are in sub-pixel accuracy. Specifically, we perform 
bilinear interpolation using depth values from the four 
corresponding neighboring pixels on the Depth image grid. We 
use the depth interpolation result to associate it with the SIFT 
feature and estimate the corresponding 3D point. If there is no 
valid value on one of the neighboring depth pixels we eliminate 
the feature from the global features list. Finally, we perform 
nearest neighbors matching (KNN) on the remaining features and 
establish, indirectly, 3D correspondences between the two point 
clouds. The overall 3D points matching pipeline is illustrated in 
Figure 4. 

4.1.2 Dominant motion estimation 

Once sets of 3D matches are established, the dominant motion 
between the two views of a 3D scene can be estimated. 
Essentially, the problem that needs to be solved is the problem of 
robust registration of two rigid 3D point clouds. This is a well-
studied problem in the computer vision literature. Our approach 
for solving it employs the generalized Least Squares fitting 
algorithm described in [2]. During the computation, we also 
employ RANSAC [5] to detect outliers that are due to 
independently moving objects. Specifically, out of the initial 3D 
point sets, we repeatedly draw four random pairs of corresponding 
points at time to estimate the rotation R and the translation t 
between these 3D point clouds. 
 

4.1.3 Independent motion detection 
Having established the R, t parameters of the dominant motion 
between two different views v1 and v2 of a scene as well as the 3D 
depth values, we can generate a synthetic view v1’ of v1 as this is 
observed from v2. v1’ and v2 should be identical, provided that 
there is no independent motion occurring between the two views. 
If an object moves independently to the sensor, then its image 
points will not be correctly registered. . This can be exploited to 
detect independent motion, because after registration, a 
conventional change detection algorithm can be applied to v1’ and 
v2 to detect such objects . In Figure 5 (see caption for details) we 
demonstrate the results of such a simple change detection 
technique (image differencing) applied to the target and the 
synthetic depth image. Differences greater than a threshold are 
assumed to belong to independent motion.  
The complete pipeline of the independent motion detection (IMD) 
module was tested on a PC with an Intel i7 870 processor, an 
NVidia GeForce GT330 graphics card and 8GB of RAM. All 
steps of the algorithm are currently implemented on CPU, with 
the exception of the KNN similarity matching which is 
implemented on GPU. The IMD module operates at ~1 fps. The  
  

 
Figure 5: Independent motion detection between a source and 

a target RGB-D pair. (a) The RGB-D pairs. The red box in the 

center of the scene moves independently to the sensor. (b) The 

synthetic image pair generated based on the estimation of the 

dominant motion between the source and the target pairs. This 

is identical to the target pair at all points except from the ones 

corresponding to the independently moving object. (c) Change 

detection results between the target and the synthetic pairs. 

The detected foreground (shown in red color) corresponds to 

image regions with independent motion. 

 
usage of less computationally demanding ORB features allowed 
the IMD module to operate at ~4 fps. 
The proposed methodology proves sufficiently robust in 
estimating the dominant motion between point clouds 
corresponding to RGB-D image pairs. The use of other feature 
extraction and matching algorithms like the FAST algorithm [3] 
can be considered. Generation of synthetic RGB-D pairs with 
respect to the dominant motion is currently performed without 
sub-pixel accuracy and without reasoning about possible 
occlusions. This results in inaccuracies in the generated synthetic 
RGB-D pair. To improve this, the generation of the synthetic view 
needs to be performed with standard rendering techniques. 
 

4.2 Object Detection 
For object detection we introduced a novel method, which is 
described in detail in [24]. The method is scale and rotation 
invariant and exploits RGB information. This method provides 
valuable information regarding detection and localization of 
foreground objects and can be used for efficient detection of 
humans and faces, The proposed method represents an object as a 
Histogram of Oriented Gradients (HOG) [22]. HOGs have proven 
to be robust object descriptors. A variant of an existing rotation 
invariant HOG-like descriptor is proposed, while object detection 
and localization is formulated as an optimization problem that is 
solved using the Particle Swarm Optimization (PSO) [23]. A 
series of experiments demonstrates that the proposed approach 
results in considerable performance gains without sacrificing 
object detection and localization accuracy. Illustrative examples 
from the operation of the proposed method are provided in Figure 
6. 
The proposed method enhances object identification and 
manipulation. HOBBIT is planned to support learning of 
unknown objects and maintain a considerably large dataset of 
known objects which it will be able to detect, fetch and carry. 
Therefore, efficient object detection in domestic environments 
(i.e. floor, table etc.) facilitates object identification and the 
subsequent procedures of object grasping/manipulation. 
 



 
Figure 6: Representative object detection results of the 

proposed approach [24]. In each row, the leftmost item 

indicates the query object and the subsequent items indicate 

the detection result for various images containing the object of 

interest.  

 

 
Figure 7: Illustration of 3D skeleton tracking and pose 

estimation results for two RGB-D data frames. The human 

body is being tracked with respect to the 3D skeleton model 

and body poses are estimated based on the acquired depth data 

for each frame. Only the body limbs and joints are drawn in 

these sample colored images. 

 

4.3 Body Pose Estimation 
Body pose estimation is closely related to 3D skeleton tracking, 
both provided by computer vision algorithms of NITE2 [16]. In 
each frame, the previous estimated body pose is being tracked to 
coarsely follow the new acquired depth data of an identified 
human body. The body estimation process performs a 
readjustment of the tracked 3D positions/orientations of body 
limbs/joints after the tracking task is accomplished, estimating the 
body configuration for that frame. An illustration of both tracking 
and pose estimation results is provided in Figure 7. Two frames 
are shown, where tracking of the detected human body and 
estimation of the body pose were performed. Thus, the trajectories  
 

                                                                 
2 NITE is an OpenNI compliant middleware component that 

perceives the world in 3D, based on data captured by a 
PrimeSense 3D sensor (Kinect and XtionPro Live). It is a freely 
available and proprietary (closed-source) software package that 
includes both computer vision algorithms that enable 
identifying users, tracking their movements and recognizing 
gestures/poses, as well as a framework API for implementing 
Natural Interaction UI controls that are based on user gestures. 

 

 
Figure 8: A detected human body is localized and tracked in 

the scene based on depth data acquired by the camera. 

Localization information is provided at the upper part of each 

depth frame regarding the 3D position, distance and angle of 

the user with respect to the camera. 

 
of body limbs and the 3D rotations of body joints are available for 
each moment in time.  
 

4.4 Body Localization & Tracking 
Given the human body initialization and detection results of the 
previous task, 3D skeleton tracking is performed by estimating the 
new 3D positions and orientations of body limbs and joints in 
every frame based on the acquired depth data. 
Body localization is performed by acquiring the 3D position of 
the body torso. Moreover, the distance to the sensor is calculated 
by projecting the 3D position of the torso joint to the extracted 3D 
floor plane. Based on the extracted information, a 3D bounding 
box can easily be calculated for each frame based on the extracted 
depth data of user’s body. Emergency detection in case of user’s 
fall can be performed by analyzing the length, velocity and 
acceleration of each dimension of the calculated 3D bounding 
box. Moreover, 3D body skeleton tracking provides a rich set of 
information that enables efficient inspection of body movements 
and significantly enhances action recognition. An interesting user-
driven application that HOBBIT will support based on this 
information regards visual-assisted rehabilitation and physical 
therapy/exercise of elderly in their homes. 
 



 
Figure 9: Head 3D pose estimation based on depth data [25]. A 

sample result from the experimental evaluation of the method 

is superimposed in the grayscale image of a human subject. 

The 3D head pose estimated by the proposed algorithm is 

shown in blue. The solution in red is the one estimated by the 

method described in [27]. 

 

4.5 Head Pose Estimation 
Head pose estimation is an important aspect of human 
observation. NITE provides information regarding head pose by 
acquiring the position and orientation of the head joint of the 
employed skeletal body model. However, the efficiency of that 
information heavily depends on the estimation of the rest of the 
skeleton model and is not full, i.e., does not provide access to all 
the degrees of freedom of head motion. Therefore, it is inadequate 
to provide high accuracy and estimation of individual head 
movements that could indicate human’s intentions. 
We designed, implemented and evaluated a novel approach for 3D 
head pose estimation based on depth data of a detected face [25]. 
The method searches the 6-dimensional pose space to find a pose 
from which the head appears identical to a reference view 
acquired at initialization. This search is formulated as an 
optimization problem whose objective function quantifies the 
discrepancy of the depth measurements between the hypothesized 
views to the reference view. Particle swarm optimization (PSO) is 
utilized to search for a maximum of the objective function. The 
proposed method outperforms existing methods in accuracy. It is 
robust and tolerant to occlusions and handles head pose 
estimation in a wider range of head poses. Sample results of the 
method are shown in Figure 9. 
This method will be part of the system for visual human 
observation enhancing functionalities provided by the robot. 
Combining the accurately estimated 3D head pose and the 3D 
direction of a pointing arm from the estimated skeleton body 
model both looking and pointing to a specific area in 3D, a 3D 
point or area in space could be determined indicating, for 
example, an object of interest to the user. 

 

4.6 Action Recognition 
Action recognition is a module that utilizes services provided by 
the previously described modules. The gesture and pose 
recognition components that compose this module are responsible 
for recognizing a number of predefined gestures or poses 
performed by the detected human using his full body or his body 
parts. Gestures refer to a series of poses performed within a time 
window of configurable length. This task utilizes methods for 
gesture and pose recognition which are available by the NITE 
algorithms layer, exploiting the rich set of information computed 
by the 3D skeleton tracking and pose estimation tasks in the 
previous system phase. A limited number of predefined gestures 
and poses are supported. These gestures and poses are utilized and 
mapped to specific commands and tasks to be executed by the 
robot. The supported gestures and poses are “Hand-Push”, “Swipe 
up/down”, “Swipe left/right”, “Circle”, “Waving”, “Raise Hand”, 
“Cross hands”, “Hands-up”, and have been determined based on 
extended studies of the user needs in the context of HOBBIT 
scenarios. Based on the recognition of these actions, an efficient 
vision-based user interface is feasible, mapping specific actions to 
robot commands, thus enabling natural interaction between the 
user and the robot. We refer an example of mapping between user 
actions and robot commands as follows: “Help-the-user” robot 
command is initiated after a “Cross hands” user action in front of 
the robot, “Stop task” robot command for a “Hand-push” user 
action, “Come here” robot action for a “Waving” user action, 
“Localize and grasp object” robot command for a “Raise Hand” 
and pointing with the other hand to an object of interest by the 
user, answering “Yes/No” dialogues with the robot using “Swipe” 
gestures.  
Vision-based extraction of relevant information based on head 
pose and gaze direction estimation, object detection and scene 
segmentation can be integrated with information based on 
recognized gestures/postures to enhance the performance 
action/activity recognition of the user and facilitate other useful 
user-driven applications. 
 

5. NEXT STEPS 
 
Several extensions for vision-based human observation are 
planned within HOBBIT: 
- Develop new approaches to human motion capture and 

gesture/posture recognition, especially for the case where a 
human is not fully visible by the employed camera. This will 
facilitate human-robot interaction, as now the distance of the 
robot to the camera needs to be inconveniently large for the 
camera to have a relatively complete view of the users’ body.  

- Provide a more elaborate and effective fall detection 
mechanism to be used for emergency detection. It is also 
important to be able to detect humans already lying on the 
floor. This will enable HOBBIT to detect emergency 
situations and events that did not occur in front of its camera.  

- Interact with Ambient Assistive Living sensors installed in the 
environment (AAL-enabled home) to provide enhanced 
human detection, localization and tracking. This will further 
improve the detection rate of emergency situations. 
 
 



- Gestures: 
o Hand gestures: A number of predefined or custom gestures 

(either single handed or bimanual) performed by a user 
could be recognized, providing richer interaction with the 
robot via a gesture recognition interface.  

o Custom body gestures/poses: A larger set of predefined 
gestures performed by user using his whole body or parts 
could be recognized. 

- Support of specific applications such as: 
o Gesture control-based computer games: Users could 

perform body movements and gestures to play a computer 
game (drawing, pong, pac-man, shooting etc) shown on 
robot’s touch screen.  

o Vision-based observation for special physical exercise 
programs for rehabilitation: HOBBIT may provide videos 
on its touch screen showing experts to perform physical 
exercises for rehabilitation of various health issues 
according to user’s needs. The robot may prompt user to 
follow these movements providing spoken instructions. At 
the same time user’s position, movements of the body parts 
will be captured, analyzed and compared to recorded 
“ground truth” movements/patterns to provide supervision 
and further spoken instructions for better performance on 
these exercises.  
 

6. CONCLUSIONS 
 
We presented our approach towards developing vision-based 
perceptual capabilities for socially assistive robots within the 
framework of the HOBBIT project. We described the key modules 
of independent motion detection, object detection, body 
localization and tracking, head pose estimation and action 
recognition and we explained how they serve the goal of natural 
integration of robots in human environments. Furthermore, we 
presented our plans for future work, towards more elaborate and 
robust visual competencies that will enable the natural, vision-
based interaction of humans with socially assistive robots. 
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1 Introduction 
The proposed and developed method delivers efficient part-based 3D 

upper human body detection and tracking based on the depth data 

acquired by a freely moving RGBD camera. To this end, we employ a 

part-based upper body model consisting of 3D geometric primitives 

(cylinders) to fit the observed upper body parts. The method is able to 

detect human body parts such as arms, heads and human torso, match 

them to instances of a 3D human upper body model and track them over 

time. Our method is highly tolerant to self-occlusions. We use intrinsic 

calibration data of the camera to convert the acquired 3D point cloud 

representing the structure of the scene to XYZ points for each frame. 

2 Methodology 

2.1 Overview of the method 
Error! Reference source not found. provides the block diagram of the 

methodology for the detection and 3D tracking of multiple humans 

based on RGBD input.  In the following, each part of the diagram is 

reported in detail. 

Detection and segmentation of 
upper body part candidates

Preprocessing
-Edge detection

- Edge completion

Build image graph 
&  compute 

depth-based vertex 
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Head 
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Figure 1:  Block diagram of the of the methodology for the detection and 3D tracking of 
multiple humans based on RGBD input  

 

 



2.2 Preprocessing 

 

For each acquired depth frame, edge detection and completion are 

applied as preprocessing steps, using a 3x3 kernel and 8-connectivity 

scheme among image pixels to strengthen scene depth discontinuities. 

Moreover, a cutoff depth value is set equal to 250 cm. Scene points with 

depth values that are greater than this cutoff value are considered as 

background and their values are set to zero. 

 

Figure 2: Illustration of preprocessing steps. The input depth frame is shown in (a). Edge 
detection and completion are then applied to enhance depth-based discontinuities, shown 
in (b) as a binary edge map. Finally, (c) provides the preprocessed input depth frame It, 
where depth values of the detected edge pixels and the background pixels are suppressed. 

Edge detection: As a first step, a maximum distance to the observed 

scene is set, usually about 250 cm. Therefore depth pixels that are 

further than the threshold value are discarded. We apply a 3x3 kernel on 

each depth image pixel using a minimum threshold of 30mm to detect 

edges. If the depth value of the central pixel is more than 30 mm from 

any of its 8-neighbors, it is considered as an edge point. This prevents 

having double pixel size edges. Our aim is to preserve pixels of shapes 

that are closer to the camera: by proceeding this way, the background 

pixels are set as edges in priority. 

Edge completion: Given the binary edge map, a 3x3 kernel is also 

applied to traverse edge pixels. We align the kernel to each edge pixel 

and check if any of the corner pixels is also an edge pixel and that the 

center pixel and this corner are connected with a 4 connectivity path, 

meaning that at least one of the 2 pixels that are adjacent to both the 

center and the corner must be an edge. If this is not the case, one of 

these adjacent pixels are set to be an edge by the following order of 

priority: 0 depth (unknown or discarded depth), far depth, close depth. 



The intuition of the described process is to preserve depth values that 

are closer to the camera plane. 

Suppress edge points of the depth image: Subsequently, we suppress 

the depth values of the detected edge pixels from the original depth 

frame. This will enhance discontinuities among depth values of adjacent 

pixels, facilitating the subsequent procedure of constructing an image 

graph in order to identify depth-based disjoint image segments. 

 

2.3 Build image graph & compute depth-based 

descriptors 
 

The preprocessed depth image It is modeled as a simple directed graph, 

noted as Gt = (V,E). Each graph vertex Vi corresponds to a patch PVi of 

adjacent 7x7 depth pixels in It.For each vertex Vi, we search for the non-

zero depth pixel closest to center of Pv . Its value is stored to the graph 

vertex representing its 3D position, noted as Cvi  = (xi,yi,zi), and its status 

is set to “active”. In case all pixels of PVi are zero, the center of Vi is set to 

zero and its status is set to “inactive”. 

We consider each graph vertex to be connected with all its 8 adjacent 

vertices using two bidirectional edges per adjacent vertex. Any directed 

edge EAB, between two graph vertices VA and VB, also carries information 

regarding the 3D positions of starting and ending image pixels. By 

default, those are set equal to the center positions of vertices VA and VB, 

respectively. It should be noted that those values for a graph edge EAB, 

where VA is set as inactive, are set as undefined. 

A semantic label LE = {flat, up, down} is assigned to each directed edge 

EAB of the graph connecting two adjacent graph vertices VA, VB.  

Based on CVA and CVB, we traverse the directed line AB in It image in 

order to determine the label as follows: 

 If no zero-valued depth pixel exists on that path, the edge EAB is 

labeled as “flat”, implying that there are no discontinuities 

between the corresponding graph vertices. 



 The edge EAB is labeled “up”, if the 3D position of It(xB,yB) is lower 

than It(xA,yA), as it is closer to the camera plane than the depth 

pixel A, otherwise it is labeled “down”. The graph edge EBA, will 

then be labeled “down” or “up” respectively. 

 In the particular case in which any graph vertex VB is set to 

inactive (i.e., it represents a cell of pixels of zero depth values) the 

graph edge EAB will be set to “down”. 

 In case a “down” label is defined for an edge EAB, we set its 

destination position CEB equal to the position of the last valid pixel 

encountered before the invalid pixel is set to be the position of 

the link. 

 

Figure 3 and Figure 4 illustrate the constructed graph vertex and parts of 

it for our example input depth frame, respectively. 

 

 

Figure 3: An illustration of an image graph. Graph vertices and edges are color coded. 
Green square areas indicate foreground pixel patches of the image, thus active ones, while 
red ones indicate background image patches that are modelled as inactive. Edges between 
any two vertices are colored as green for flat edges, blue for “down” edges and red for 
“up” edges. Black edges stand for links between inactive graph vertices. Black areas of the 
image indicate the absence of links among inactive graph vertices (red squares). 



 

Figure 4: Parts of the image illustrated in figure 3 are shown. “Up” and “down” edges 
between active (green squares) graph vertices on the left image are illustrated, indicating 
the boundaries between scene areas of different depth values. In the right image, “down” 
edges (blue lines) mostly appear between any pair of active and inactive graph vertices 
(green and red squares, respectively), indicating the boundaries between a foreground 
body part and the background of the scene (red graph vertices). 

We compute a descriptor per graph vertex, that is, a feature vector 

encoding the labels of its eight outgoing edges, the 3D direction and 

Euclidean distance to the closest “down” edge in each direction. In case 

an “up” edge is met across the line, we set a maximum value to that 

feature value, implying an undefined distance to the borders of the 

graph vertex towards that direction. 

An example of the described process is shown in Figure 5. On the left 

drawing, each direction of the descriptor reaches a depth discontinuity, 

thus an “up” graph edge. On the right, one of the rays crossed an “up” 

edge. Therefore, we assume that it crossed a boundary of an object that 

occludes the object in the front: the distance to the closest border can 

be anywhere under the part or further. This ray is consequently ignored 

in the rest of the process.  

  

2.4 Detection & segmentation of upper body part 

candidates 
 

In the following algorithmic steps, our goal is to sequentially decompose 

the observed upper human bodies by detecting and segmenting depth-

based connected components that correspond to upper body parts. 

We define a set of parameters regarding the geometric properties of 

each type of body part to be detected. Those refer to a pair of mix-max 



width limits and a reference length for an arm, min-max radius limits for 

a head and min-max radius for body torso. 

  

Figure 5: An example of building the descriptor for a graph vertex V is illustrated. The 
graph is represented as a circular area in the drawing, casting 2d lines to all directions, 
through each of the outgoing edges of the vertex. We traverse each of the lines until a 
“down” graph edge is crossed, that is considered to represent a depth boundary between 
distinct parts of the scene. In case an “up” edge is crossed, we set the distance value 
towards that direction as undefined; signifying an unknown structure to be is closer to the 
camera than the graph vertex V. 

 

Given the described set of parameters, the computed image graph G and 

the preprocessed depth image It, we detect and segment the arms, 

heads and torso candidates in a sequential way. Initially, arm candidates 

are detected and segmented. We then remove the corresponding blobs 

of the image, in a systematic way similar to those applied by color-based 

image completion techniques. To this end, we try to replace the depth 

values of that area with predicted values to match the most spatially 

proximate pixels to the removed arm candidate, thus the structure of 

the scene. The described procedure is performed twice, in order to 

handle self-occlusions between the body arms. In a similar way, head 

candidates are detected and segmented in the updated depth frame and 

the corresponding image graph. We then remove the corresponding 

image blobs in a similar way as for the arms. We also update image and 

graph data and search for body torso candidates. 

Given a list of candidate upper body parts of each type, in the next 

algorithmic steps, we combine individual body parts into upper body 



sets and match those with prior information of upper bodies observed in 

the scene in the previous frames. 

The detailed process of detection and segmentation for each upper body 

part is reported in the following subsections. 

 

2.4.1 Arm candidates 

 

The following steps are applied in order to detect and segment arm 

candidates based on the input depth image, the constructed image 

graph and the vertex descriptors. They are reported in detail, in the 

following subsections. 

The following algorithmic steps are applied twice: 

1. Compute extremity score for each unvisited graph vertex. 

2. Extract elongated paths on the graph and segment arm 

candidates. Mark explored vertices as visited. 

3. Validate segmented arm candidates and remove them from 

the depth frame. If validation of any arm candidate is not 

successful, discard the relevant extremity scores and paths 

computed for it and mark corresponding vertices as unvisited. 

4. Update graph vertices and edges as well as depth frame. 

Compute extremity score: Our goal is to detect elongated parts based 

on the computed vertex descriptors. Each vertex will be assigned an 

extremity score. A high extremity score means that the graph vertex 

and, thus, its corresponding pixel patch is more likely to be located onto 

the extremity area of an arm. 

Given the vertex descriptor, a 4-directional pattern is utilized in order to 

calculate the extremity score that vertex, as illustrated in Figure 6.  

Our aim is to identify the most appropriate orientation of that pattern 

being located on the central point of the vertex; therefore each vertex 

will vote for the orientation of the extremity part from its own position 

and perspective.  



The “equal” signs of the pattern indicate the two directions where the 

lateral parts of an elongated object part are to be located, whereas 

“plus” and “minus” signs indicate the direction towards the most distant 

and closest direction to the endpoint boundaries of the elongated part, 

respectively. The pattern is aligned with the central point of each vertex 

and is rotated towards all 8 possible directions, as illustrated in Figure 6. 

We compute an extremity score per direction, thus a score vector of 8 

values occurs after all rotations. The maximum value is considered as the 

extremity score for our graph vertex.  
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Figure 6: An 8-connected set of graph vertices is illustrated. The 4-directional pattern is 
aligned with the central vertex and rotated towards all possible directions (45 degrees per 
rotation starting from the leftmost to the rightmost pattern). For each rotation, an 
extremity score is calculated based on the product of three partial scores, one for each 
sign-type of the pattern. We finally choose the maximum of the extremity scores. 
 

We recall the predefined minimum and maximum width values of an 
arm and its maximum allowed length. Given the descriptor of a graph 
vertex Vi, the 3D Euclidean distance to the closest “down” edge found 
towards each direction x = {+/-1:8}, is noted as d(Vi,x) or an undefined 
value if no “down” edge was found. The opposite direction of x is 
denoted as –x. 
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Figure 7: The 4-directional pattern is illustrated with respect to all possible directions. 



The extremity score xscore(Vi,x) per direction x of vertex Vi is the 

product of the partial score values, computed as follows: 

𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑐𝑜𝑟𝑒  𝑉𝑖 , 𝑥 =   
𝑎𝑏𝑠 𝑑 𝑉𝑖 , 𝑥 − 𝑑 𝑉𝑖 ,−𝑥  

𝑚𝑎𝑥𝑤𝑖𝑑𝑡ℎ
, 𝑖𝑓 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑖𝑓 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝑂𝑅  

𝑑 𝑉𝑖 , 𝑥 + 𝑑 𝑉𝑖 ,−𝑥 > 2 ∗ 𝑚𝑖𝑛𝑤𝑖𝑑𝑡ℎ

𝑑 𝑉𝑖 , 𝑥 > 𝑚𝑎𝑥𝑤𝑖𝑑𝑡ℎ

𝑑 𝑉𝑖 ,−𝑥 > 𝑚𝑎𝑥𝑤𝑖𝑑𝑡ℎ

   

 

𝑝𝑙𝑢𝑠𝑠𝑐𝑜𝑟𝑒  𝑉𝑖, 𝑥 =   
min 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑑 𝑉𝑖 , 𝑥  

𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ
, 𝑖𝑓 𝑑 𝑉𝑖 , 𝑥 < 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑚𝑖𝑛𝑢𝑠𝑠𝑐𝑜𝑟𝑒  𝑉𝑖 ,𝑥 =  
1 −

𝑑 𝑉𝑖, 𝑥 

𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ
, 𝑖𝑓 𝑑 𝑉𝑖, 𝑥 ≤ max𝑙𝑒𝑛𝑔𝑡ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝒙𝒔𝒄𝒐𝒓𝒆 𝑽𝒊,𝒙 = 𝑚𝑖𝑛𝑢𝑠𝑠𝑐𝑜𝑟𝑒  𝑉𝑖 , 𝑥 ∗ 𝑝𝑙𝑢𝑠𝑠𝑐𝑜𝑟𝑒  𝑉𝑖 ,𝑥 ∗ 𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑐𝑜𝑟𝑒  𝑉𝑖 ,𝑥  

 

𝑬𝒙𝒕𝒓𝒆𝒎𝒊𝒕𝒚𝒔𝒄𝒐𝒓𝒆 𝑽𝒊 = max
𝑥=1:8

𝒙𝒔𝒄𝒐𝒓𝒆 𝑽𝒊,𝒙   

 

 

Equation 1: The calculation of extremity score per graph vertex. 

 

The final extremity score for graph vertex Vi is computed as the 

maximum over all directions x (see last equation in Equation 1). An 

extremity vector towards the maximum direction is also stored to 

facilitate the following computations. Figure 8 illustrates the extremity 

map of the image graph. Vectors over all vertices of the image graph are 

also rendered. 



 

 

Figure 8: The extremity map of the image graph is illustrated. Pink and red colored vertices 
indicate high extremity score, therefore the corresponding vertices are more likely to 
belong closer to endpoints of arm body part, which is extending towards the stored 
extremity-direction that is also illustrated as colored edges. (Colors indicate the extremity 
score in descending order as red-orange-yellow-blue-cyan-green). 



Searching for elongated parts & arm candidates: Our aim is to search 

for elongated parts represented as graph paths based on the derived 

extremity score and direction per vertex. Selecting a high rated graph 

vertex, a depth-first search is initiated based on the extremity vectors 

and scores until a “down” graph edge is crossed. We assume the 

resulting path will traverse an arm candidate body part. The following 

steps are applied twice in order to extract all arm candidate parts and 

also handle self-occlusions between arms.  

a. Find the highest rated graph vertex Vi and perform a depth-first 

search based on extremity scores and directions. 

b. For each visited vertex, check the three connected neighbors 

towards the direction that is indicated by the extremity vector of 

the current vertex and mark them as visited. 

- Visit the highest rated vertex, if any is connected with “flat” 

edge, mark that as visited and go to b. Mark the rest of the 

vertices, if any, as visited. 

c. Given the computed path, our goal is to segment a graph 

component that corresponds to an arm candidate.  

For each vertex of the path, cluster all vertices in the proximity up 

to a maximum depth, if they are connected with “flat” graph 

edges. Check them as visited and assign a unique identifier to 

them for the newly segmented arm candidate. 

d. Check the segmented arm candidate with respect to the 

predefined parameters/thresholds of its geometric properties.  

If the compatibility test I successful, proceed and remove it from 

the depth image It. Graph nodes and edges that are part of the 

segmented arm candidate area will be updated. The validation 

and removal processes are described in the following section. If 

the arm candidate is invalid, undo visited flags applied to graph 

vertices during the current iteration. 

e. Go to step (a) and find the next unvisited, highest rated vertex and 

start over to segment a new arm candidate. Stop when there are 

no more unvisited vertices with positive extremity score. 

 

 



Validate and remove arm candidates: In the following, selection and 

removal of arm candidates is described. First, we check the geometric 

properties of the selected arm candidates to match the predefined 

parameter properties with respect to the maximum and minimum width 

of an arm and its reference (maximum) length. 

In case an arm candidate is accepted, we remove it from the depth 

frame, performing a depth-based image completion technique to 

replace the corresponding area of the depth frame. In brief, we compute 

the two perpendicular lines to the local slope of the extremity path. 

Those lines are composed of two subsets of graph vertices and cross the 

lateral borders of the arm candidate. We traverse the path determined 

from each line and check the depth value of the first vertex that is not 

assigned to the segmented arm-graph component. We mix the depth 

values of those two graph vertices, if both are active, or choose the valid 

one. The resulting depth value is assigned to all graph vertices that 

belong to the arm candidate and the path of each aforementioned 

perpendicular line. If both graph vertices are not valid, we set zero depth 

value to all vertices of each path.  

The described technique is demonstrated in Figure 9, where two upper 

human bodies are observed. Four arm candidates have been detected 

and removed from the input depth frame during the two iterations of 

the process. In that case, due to self-occlusions among the arms and the 

body torso, the depth values that were used in order to complete the 

removed arm candidates correspond to the depth pixels located on the 

body torso area of each subject. 

Finally, the input depth frame and the image graph are updated to 

reflect the new image content, where the arm candidates have been 

removed from the scene. 

 

2.4.2 Head body parts 

 

The following steps are applied in order to detect and segment head 

candidates based on the updated depth frame, the updated image graph 



and its vertex descriptors. They are reported in detail, in the following 

subsections. 

1. Compute circularity score per graph vertex 

2. Extract elongated paths on the graph and segment arm 

candidates. 

3. Validate segmented arm candidates and remove from the 

depth frame. 

4. Update graph vertices and edges in case an arm candidate is 

removed. 

Compute circularity score for head body parts: Our goal is to detect and 

segment in a similar way the head candidates, using circularity score per 

vertex. We set two parameters for the minimum and maximum radius of 

a head to be detected. The circularity score cscore(Vi,x) per direction x 

of vertex Vi is computed as follows: 

- Check the distances d(Vi,x) of the descriptor of vertex Vi towards 

all x directions.  

o If more than three distance values exceed the maximum 

radius value for a head candidate part, we set circularity 

score to zero and we exclude Vi from the following 

calculations. 

o Otherwise, perform the following computation per vertex 

Vi: 

 

 

 

 

 

 

 

 

𝑐𝑠𝑐𝑜𝑟𝑒 𝑉𝑖,𝑥 =
𝑎𝑏𝑠  𝑑 𝑉𝑖,𝑥 −𝑚𝑒𝑎𝑛 𝑑 𝑉𝑖, :    

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑑𝑖𝑢𝑠
 

𝑒𝑙𝑠𝑒  

𝑐𝑠𝑐𝑜𝑟𝑒 𝑉𝑖 , 𝑥 =  
𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠 −𝑚𝑒𝑎𝑛 𝑑 𝑉𝑖 , :   

𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠 
 

𝑐𝑠𝑐𝑜𝑟𝑒 𝑉𝑖 =   𝑐𝑠𝑐𝑜𝑟𝑒 𝑉𝑖, 𝑥 

𝑎𝑙𝑙 𝑥

 

𝑖𝑓 𝑚𝑖𝑛𝑟𝑎𝑑𝑖𝑢𝑠 ≤ 𝑑 𝑉𝑖, 𝑥 ≤ 𝑚𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠  

The final circularity score for each graph vertex Vi is: 

Equation 2: Equations on the calculation of circularity score. 



In a similar way to searching for arm candidates, we select the vertex 

with the highest circularity score that is not marked as visited and cluster 

the vertices around it up to a maximum radius. We mark all clustered 

vertices as visited. The average position of all clustered vertices is set as 

the central point of the head candidate part. We repeat until all graph 

vertices with positive circularity score have been marked as visited, thus 

assigned to head candidates. 

We then remove all head candidates from the updated depth image, 

complete the corresponding areas of the image and update the image 

graph. The resulting depth image and the updated image graph contain 

no information regarding the head and arm candidates, as shown in 

Figure 9. 

 

2.4.3 Body torso parts 

In the following steps, the main body torso candidates are detected in 

the updated depth image and graph. We also rely on circularity score 

function to detect torso candidates following the same algorithmic 

steps, as for the head candidates. 

 

2.4.4 Combine head-torso parts 

Once body torso and head candidates are available, we try to identify 

compatible head-torso pairs assessing the angle between their center 

points and the Euclidean distance between them. 

 

2.5 Tracking & matching of head-torso pairs with 

prior upper body models 
Tracking is performed after head-torso have been are identified. The 

detected pairs are matched with the head-torso of the upper bodies of 

the previous frame. Matching is performed by associating pairs with the 

closest upper body in the previous frame; the matching criteria being 

the sum of the Euclidian distances between the heads and the torsos. A 



detected pair is not matched if any of the two distances is higher than a 

threshold (maximum tracking distance, which is set to 10 cm.). 

 

 

 

Figure 9: The input depth image is illustrated in the top left figure, where depth values are 
color coded. Removing the arm and head candidates results the depth images illustrated 
in the rest of the figures. In the top right and bottom left figures, the detected arm 
candidates have been removed from the initial depth image. The corresponding areas of 
depth-based pixels have been replaced/completed using depth values extracted from the 
surrounding areas, thus the body torso of the subjects in our case. The bottom right figure 
illustrated the final result after the head candidates have also been removed from the 
frame. Those areas have also been replaced using background values, in that case zero 
depth value. 

 

2.6 Fit arm candidates to head-torso sets 
 

For each head-torso set candidates, we consider a 3D line connecting 

their part centers. Our goal is to find the correct neck position and refine 

the body center position. To this end, we fit a polyline of 2-segments to 

the projection of the 3D line, connecting the head to the neck and the 



neck to the body torso, given predefined head-neck and neck-torso 

lengths. 

For each arm candidate and head-torso set, we extend the arm path 

from each extremity endpoint towards the neck point. We extend the 

path from each arm-endpoint in a similar way as performed for the arm 

extraction, where an elongated path was computed. The following 

algorithmic steps are applied: 

o For each head-torso set, we compute up to two paths from an 

arm candidate towards the neck point of the set. 

o Given the paths computed for all arm candidates towards the 

neck point of a head-torso, we fit a 5-segment polyline to each 

path. A fit score is computed for each polyline. 

o We keep the polyline with the best score, thus the best pair of 

arms for the head-torso set. 

 

In essence, we derive the 3D positions of the skeletal body joints of our 

upper body model based on the described process of fitting polylines 

between head, torso and arms candidates.  

 

2.7  Optimization 
An optimization process is also applied for each set of upper body 

detected and tracked in the previous frame with respect to the 

individual candidate parts detected and segmented based on the 



depth frame, as seen in 

Detection and segmentation of 
upper body part candidates

Preprocessing
-Edge detection

- Edge completion

Build image graph 
&  compute 

depth-based vertex 
descriptors

Head 
candidates

Fit arms to head-torso sets,
keep the correct sets 

& refine 3D skeletal upper 
body model

Torso 
candidates

Arms 
candidates

Match current head-torso 
pairs to previous data

& keep the best

Compose and 
choose 

head-torso pairs

Optimization

Final result
Fuse matched sets with 
optimization results and 

create new models for the 
unmatched sets

Depth Image 
sequence -

frame t

Part-based 3D Upper 
body model
at frame t-1

Part-based 
3D Upper body model 

at frame t-1

 
Figure 1. The 3D cylindrical parts of the upper body model computed for 

It-1 depth frame are optimized to better fit to the depth data of the part 

candidates in the current frame.  

The objective function evaluates how well the model’s skeleton follows 

the surface of the depth of a part-candidate. In essence, the 

optimization process provides high score when the 3D skeletal line of a 

previously tracked body part model is projected very close to the center 

of an observed body part-candidate and its radius is close to its 

segmented borders in the current frame. 

 

2.8 Fuse upper body models 

As a final step, we compute the current 3D position and lengths of upper 

body parts by fusing the optimized 3D upper body model and the one 

computed based on the composition of detected and segmented part 

candidates in the current frame. The final 3D upper body model provides 

a precise estimation of body joints and lengths of the body parts. 

Moreover, our method supports multiple 3D upper body detection and 

tracking, whereas self-occlusions can be handled based on the dynamic 

3D detection and composition of body parts in each frame. Figure 10 

illustrates the final result in the presence of self-occlusions among the 

arms and torso. The derived 3D joints and lengths of the 3D upper body 

model are overlaid on a depth frame. 



 

 

Figure 10: The final result is illustrated as a 3D skeleton upper body model. 
 

3 Experimental Results 
Several videos have been recorded in laboratory setting and in domestic 

environments where elderly that will be real users of PT2 Hobbit robot, 

performed a variety of upper body movements in order to assess the 

performance of our methodology.  

Three of the most representative examples are demonstrated in Figure 

11. An extensive quantitative evaluation of our method is also planned 

to also compare with state-of-the-art methods for upper body pose 

detection and tracking. 



 

Figure 11: Experimental qualitative results of 3d upper body detection and tracking are 
illustrated from both datasets captured in the laboratory and in the domestic 
environments of elderly, HOBBIT users. In the left figure, the 3d geometric models (red, 
blue and green colors) have been overlaid on the color frame. The color information is not 
used by our method; it is only utilized for demonstration. In the right image, the 3d 
skeleton is rendered on the depth input frame. 

 


