

HOBBIT – The Mutual Care Robot FP7-ICT-2011-7

SEVENTH FRAMEWORK PROGRAMME

ICT - Information and Communication Technologies

HOBBIT
The Mutual Care Robot

Collaborative project

Deliverable 6.3
Physical Support for Older Persons by

Autonomous Home Robots (publication)

Organisation name of lead partner: TU WIEN

Proposal/Contract no.: 288146

2

Title: HOBBIT - The Mutual Care Robot

Acronym: HOBBIT

Grant Agreement Number: 288146

Deliverable D6.3 Physical Support for Older Persons by Autonomous Home Robots
(publication)

Revision

Associated WP WP6 Robot Navigation and Manipulation

Associated Task T6.5: Integration of “Fetch & Carry”

Due Date 30.4.2014

Date Delivered 19.7.2014

Lead Partner TU WIEN

Partners Involved TU WIEN

Authors TU WIEN (Paloma de la Puente, David Fischinger, Daniel Wolf, Markus Bajones,
Markus Vincze)

Dissemination
Level

PU

Abstract The purpose of this Deliverable is to report on the development of the final Fetch
& Carry task (T6.5) to physically support older adults in their homes. We will focus
on the three scenarios of relevance for PT2: Carry the object and execute the
GoTo command, bring an object which includes the search for the object, and the
pick-up of an object. We report improvements over D6.2 submitted three months
ago in terms of update to the PT2 platform and present first tests with the PT2
platform in these three scenarios for the final user trials.

HOBBIT is an initiative of Technische Universitaet Wien, Austria (co-ordinator); Otto Bock Mobility Solutions GMBH, Germany
(OBMS); Hella Automation GMBH, Austria (HELLA); Foundation for Research and Technology Hellas, Greece (FORTH); Lunds
Universitet, Sweden (ULUND); Akademie fur Altersforschung am Haus der Barmherzigkeit, Austria (AAF).

The research leading to these results has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 288146.

Disclaimer: This publication reflects only the author’s views and the Union is not liable for any use that may be made of the
information contained therein.

3

Table of Contents

1 Executive Summary ... 5

2 Navigation to User-specified Places ... 6

2.1 Map building for PT2 ... 6

2.2 Navigation for PT2 .. 8

2.3 Navigation to user-specified places: Trials with PT2 ...11

2.4 Summary of results in four different environments ..17

3 Finding a Known Object ..19

3.1 Tests for the Bring an Object Scenario ...19

4 Grasping Known and Unknown Objects ..26

5 Conclusion ..30

6 Appendix ...31

List of Table
Table 1: Summary of test runs for navigation in home environments for physical support of
the user. ...17

Table 2: Test results of finding objects in Environment 1 (office setting) for the four Search
Positions (SP#) and the three search runs. ..22

Table 3: Test results of finding objects in Environment 2 (IKEA home laboratory) for the four
Search Positions (SP#) and the three search runs. ..23

Table 4: Test results of finding objects in Environment 2 (AAL laboratory) for the four Search
Positions (SP#) and the three search runs. ..24

Table 5: Summary of detection rate for each object and environment (Env# where # is 1 to 3;
EnvAll refers to the sum of all three Environments). ...25

Table 6: Summary of detection rate for each environment. ...25

Table 7: Summary of first grasping trials with PT2. ...26

4

List of Figures
Figure 1: Mira Simple Map Editor tool graphical user interface. ... 7

Figure 2: Example conversion of one of our image maps from ROS (.pgm) to Mira (.png). ... 8

Figure 3: Miracenter graphical user interface. .. 9

Figure 4: Defined rooms and places (red dots). ..11

Figure 5: Second test environment and the defined rooms and places.12

Figure 6: PT2-D at a place defined in front of an armchair. Note that with PT2 we change the
place definition to be on the side to not block the way of the user out of the chair.12

Figure 7: Third test environment and defined rooms. ..13

Figure 8: Third test environment and defined places. ...13

Figure 9: In one test from the corridor to the office, the robot went too close to the final corner
and the arm collided with the wall. ..14

Figure 10: Paths to and from the corridor. One wall is missing in the map and is not always
observed by the virtual lasers. When creating the map for the user trials, the facilitator needs
to make sure all walls are included. ..14

Figure 11: Test environment in a real apartment and the defined rooms.15

Figure 12: Test environment in a real apartment and the defined places.15

Figure 13: No-go areas defined in the real apartment. ..16

Figure 14: Examples of no-go areas defined in the real apartment.16

Figure 15: Paths found from the starting position to all the predefined searching positions.
The last searching position by the entrance desk was selected first for the Bring Object
scenario. ..20

Figure 16: PT2 at one of the search positions and the image taken by the colour camera of
the robot head. There is also a depth image taken and processed.20

Figure 17: Four example images showing the objects and the scenes with clutter. Note that
objects can have very different viewpoints and scenes include cases with strong background
that render detections infeasible. ..21

Figure 18: Tests with PT2 grasping different objects: Aspirin, toy car, mug, and screw driver.
 ...28

Figure 19: Transferring the grasped cap into the tray. ..29

5

1 Executive Summary
The purpose of this Deliverable D6.3 is to present the advancements towards the final Fetch
& Carry scenarios with the aim to bring physical support for older adults.
We report on the implementation and integration of the techniques and methods developed
in Tasks 6.1 to 6.4 (presented in D6.2) in terms of the scenarios as part of the final Task 6.5
in WP6 with title “Integration of Fetch & Carry”.

Task T6.5: Integration of “Fetch & Carry”
This Task undertakes the fusion of the single mechanisms developed in Tasks T6.1 to
T6.4 to provide the functionality for the “Fetch & Carry” operations. This integration is
driven by the user needs as denoted in D1.6.

WP 6 delivers the functions of

 Map building and localisation (Task 6.1),
 Mobility in unstructured environments (Tasks 6.2 and 6.3), and
 Object detection and grasping (Task 6.4).

These functions integrate in Task 6.5 to achieve the functions needed for the following
scenarios as identified from the user requirements in D1.6:

 Call HOBBIT (scenario I),
 Patrolling as part of Emergency (scenarios II),
 Guiding the user in the safety check scenario (scenario III),
 Moving to an object and pick-up of the object in the Pick-up and clear floor commands

(scenarios IV and V),
 Searching for an object as part of the Bring me command (scenario VII),
 Moving to the target place in the Transport command (scenario XI), and
 Moving to the recharging station (scenario XII).

Seen from the perspective of the user and the scenarios, the robot has to fulfil the following
three requirements:

1. Navigation to user-specified places (all Scenarios listed above): this is based on
the techniques developed in tasks 6.1 to 6.3, namely mapping, place learning,
localisation and navigation in unstructured environments.

2. Finding a known object (Scenario VII), using results of Task 6.4 “Object detection”,
and

3. Grasping known or unknown objects (Scenarios IV, V, and VII): this builds on
object detection and grasping developed in Task 6.4.

We present these three developments in the following three Sections. The aim is to present
the tests conducted to get confirmation that the function is achieved. Furthermore, we want
to gain confidence that the function will work in the home environment as planned for the
PT2 trials.
Section 2 presents the functionality to learn a map and go to user specified places in four
homes with ten trials each. Section 3 gives the trials for finding known objects. And Section 4
presents the method (publications in the appendix) and trials for grasping objects.

6

2 Navigation to User-specified Places
First we describe the way how map building and localisation is finally realised in PT2. The
description extends what has been presented in D6.2.

2.1 Map building for PT2
The main novelties regarding map building and localization with PT2 are related to the fact that
in the end Mira navigation will be used instead of ROS. Despite the improvements introduced in
order to adapt ROS navigation to be used with RGB-D sensors1, we finally decided to use Mira
because the navigation parameters were already very well-tuned for the PT2 platform and the
planning algorithms behaviour is more robust. Furthermore, the framework performance is
generally better2.

However, we were very satisfied with the results that ROS Gmapping provides, and the tool for
annotating the rooms was designed for ROS maps, so we decided to keep the initial mapping
process the same and then convert the generated maps to Mira format.

ROS Gmapping creates two files as output. One of them is a .pgm image of the map, with
colour black representing occupied space, white representing free space and light grey
representing unknown space by default. When using a map in ROS, it is also possible to
define different thresholds for the interpretation of the three categories when loading the
maps later. Other image formats are also supported, but an important exception is that .png
is not supported on OS X. The other file that is created is a .yaml file which specifies the
image file to which it is associated, the resolution of the map in meters/pixel, the origin of the
map coordinates in meters (bottom-left corner coordinates) and several parameters
regarding the interpretation of the occupancy values and colours when loading the map.

Example:

image: map.pgm
resolution: 0.025000
origin: [-10.000000, -10.000000, 0.000000]
occupied_thresh: 0.65
free_thresh: 0.196
negate: 0

Mira navigation works with different file formats. In the first place, it expects a map
configuration file (MCF file), which is an .xml file containing all the information describing the
map structure to be used by Mira. The main map required is the static map, which represents
the static structure of the environment. A .png image of the map is used, and in this case
white is interpreted as occupied space, black is free space and dark gray represents
unknown space. An .xml file contains the information about this map, including a tag for the

1 P de la Puente, M. Bajones, P. Einramhof, D. Wolf, D. Fischinger, M. Vincze: RGB-D Sensor
Setup for Multiple Tasks of Home Robots and Experimental Results. IROS 2014. Accepted for
publication.
2 E. Einhorn, T. Langner, R. Stricker, C. Martin, H. M. Gross. MIRA – Middleware for Robotic
Applications. IROS 2012.

7

image name, the cell size (equivalent to the resolution value) in meters/pixel, the offset (or
origin coordinates) in pixels.

Example:

<root>
 <Map>

 <Image>static.png</Image>

 <CellSize>0.025</CellSize>

 <Offset>

 <X>400</X>

 <Y>400</Y>

 </Offset>

 </Map>

</root>

Besides the static map, Mira uses two other types of maps: a no-go map and a speed map.
They also require a .png image and an .xml file. The no-go map allows forbidden areas to be
defined (by default there are no forbidden areas and the no-go image map is completely
black). The speed map defines areas with limited speed (by default there are no speed limits
and the image map is entirely white). The xml files are similar to the one for the static map. It
is also possible to add rectangular, polygonal or ellipse-shaped areas where the robot should
not be allowed to go or areas with limited speed by using the mira tool Simple Map Editor.
This tool can also be used to fill small holes in the map or to correct small errors. Fig. 1
shows the graphical user interface of the simple Map Editor tool.

Figure 1: Mira Simple Map Editor tool graphical user interface.

8

The MCF file for a navigation task has to include the names of the .xml files for the three
types of map. In order to keep the system generic, we decided to use always the same
names in this file and keep two different directories, one for all the maps of different
environments that we build and one for the current map to be used in a particular test. This
way all that is needed when changing from one environment to another is copying the
corresponding files for the current environment into the current map directory.

In order to simplify the whole mapping process in the initialization stage, we created a script
that automatically converts maps from ROS format to Mira format static maps. Previously
recorded maps from our testing environments were successfully converted to Mira format
and used for navigation with Mira as explained in the following section. Fig. 2 shows one
example of a converted image map.

Figure 2: Example conversion of one of our image maps from ROS (.pgm) to Mira (.png).

The tool for the annotation of the rooms remains the same and the generated .xml files with
the information about the defined rooms are used exactly in the same way as before. All the
previous annotations that we have for our testing environments are still useful without any
modifications.

2.2 Navigation for PT2
In order to use the navigation algorithms implemented in Mira, several interfaces were
required. The basic infrastructure of the new interfaces was based on some existing
interfaces from another project, which uses ROS-based navigation and Mira for the low level
commands and the odometry data from the robot. Familiarity with both ROS and Mira
concepts, packages, dependencies, namespaces and tools was needed. In Mira, different
units can run in the same or different processes. Units can be asigned to any process at
runtime. ROS nodes run in different processes.

In the first place, the virtual laser scans obtained by the developed ROS nodes from the
RGB-D data provided by the ROS openni2 drivers required by other components of the
Hobbit system had to be read, converted and adapted to be used by Mira for localization and
obstacle avoidance. Mira navigation was originally designed to work with real laser data (with
a very low minimum range) so measurements below the minimum range of the RGB-D
sensors had to be marked as invalid. In this way, problems with 0 distance points could be
avoided. The reference frame of each virtual laser scan had to be properly assigned in the
code and defined by means of an .xml configuration file with specific namespaces. The new
laser scan data type objects were posted to the corresponding Mira channels. With this

9

interface and the low level drivers interface, PT2 would be able to perform autonomous
navigation using Mira and its Miracenter graphical user interface, but the interaction with
other modules of Hobbit would not possible and there would be problems due to the blind
area and limited field of view of the RGB-D sensors. Fig. 3 shows the graphical user interface
used by Mira. This new views replaces ROS rviz interface for debugging and monitoring
tasks. Different visualization options can be selected for the data from different channels.
The robot can also be tele-operated from the graphical-user interface.

Instead of sending goals to the robot by means of the graphical user interface, goal poses
had to be sent from ROS nodes and SMACH. For this purpose, the Pilot Mira unit and its
task-based system were used. Goals are sent by setting a task including several subtasks
regarding the final position to be reached, the final orientation, and the preferred driving
direction, with different parameters to penalise other directions. The C++ RPC interface was
used for the implementation. The feedback about the status of the navigation task provided
by the Pilot as a PilotEvent also should be sent to ROS. The possible status values are: Idle,
PlanAndDrive, GoalReached, PathTemporarilyLost, NoPathPlannable,
NoValidMotionCommand, NoData. These options were converted into similar status states in
ROS and published to a status topic. Furthermore, due to timing and synchronization issues,
a ROS actionlib server was implemented so that goals could be sent both by means of the
places definition and also in the same way as with the ROS navigation module move_base.

Figure 3: Miracenter graphical user interface.

An interface to provide the current localization pose as a ROS topic was also required in
order to use the previously developed node to determine the current room of the robot. This
functionality is used by several scenarios of the project, like the Locate User scenario and
the Bring Object scenario. The robot pose was also needed by other ROS components for
defining a goal relative to the robot, without using the places definition. The corresponding tf
relative transformation between the “map” global reference frame and the robot “base_link”
reference frame is also provided so that other transformations may be concatenated in the
tree, without any changes for other modules. The nodes that generate the virtual lasers for

10

localization and obstacle avoidance, for instance, publish their relative transformations with
“base_link” as the parent reference frame.

For the Locate User and Bring Object scenarios, it was necessary to retrieve the path to
different places in the environment so as to compute their respective lengths and decide
where to go first based on this and other sources of information. To this end, another
interface was implemented and a ROS service can now be called to obtain the path given the
final goal, just as it was when using move_base. This interface is also based on the tasks
and subtasks system of the Pilot unit, but in this case “muting” the Pilot is required so that the
navigation task is set but not executed. After the path is obtained, the task must be cancelled
and the Pilot must be “unmuted” so that future navigation tasks can be executed. The path is
obtained as a vector of points, without orientations.

Another interface was developed in order to send the robot to the docking station for
recharging from ROS, activating a specific localization mode available in Mira. New docking
stations were taught and the docking procedure was successfully tested. An interface to
publish feedback regarding the battery and recharging status was already almost available.

As mentioned before, using Mira navigation directly with the virtual laser data obtained from
the RGB-D sensors causes problems due to the blind detection area and the limited field of
view of the sensors. To avoid these problems, local occupancy grid maps with customizable
short term memory are created. Obstacles observed from a large enough distance for a
given time (at least 3 seconds with the current settings) are remembered for a while and
correctly avoided, in a very smooth manner.

Another problem was detected when the path of the robot to a goal was completely blocked,
since the obstacle was eventually forgotten and the robot was already close enough to detect
it again, so in the end it collided with the obstacle. The solution was to conduct experiments
tuning and modifying several parameters in different configuration files, lowering the decay
rate of the short term memory (from an original value of 0.1 to a final value of 0.05), reducing
the planner maximum time allowed without receiving a valid driving command (from 30 to 20
seconds) and activating a recovery strategy without defining a specific recovery method. All
these three parameters had to be changed in order to obtain satisfactory results. This way,
the problem was solved and now the robot tries to find a different path and if that does not
work then the goal is cancelled, the robot stops, and an exception is thrown. Afterwards, new
goals that are reachable by the robot can be defined and the robot navigates there without
problems, being able to complete the new navigation task.

Navigation with PT2 is smoother, more accurate and faster. The new wheels of PT2 allow for
a more precise odometry data. Localization converges faster and the particles are usually
more concentrated. The minimum number of particles is 100 and the maximum number of
particles is 5000. Experiments similar to the ones conducted with the PT1 for navigation
through a narrow corridor showed that the success rate is similar, but the navigation times
have been significantly reduced. Another relevant difference is that there were no extra
rotations and the navigation is more natural and direct. The maximum velocity value is set to
0.4 m/s. The minimum distance to dilated obstacles is set to 0.1 m, which complies with the
defined requirements for navigation through narrow areas given the width of the robot
platform including the arm.

For some scenarios, low level discrete motion commands (i.e. given distance movement,
given angle rotation) were necessary. In Mira, there is an experimental feature to send this
kind of commands, switching the Pilot from “velocity mode” to “distance mode”. The problem
was that when calling it from the ROS interface node, a sleep command was necessary in
order to keep the Pilot in distance mode during the duration of the movement, before going
back to velocity mode. This sleeping time blocked the ROS node, so no laser data were
transmitted to Mira and localization suffered from the lack of data, causing several authorities
to go into error mode. The solution to this was to execute the call-back for discrete motion
commands in a different thread within the same node, using advanced options in ROS to use
different call-back queues, particularly for a single subscriber. For this, it was necessary to

11

use an advanced version of the subscriber which takes an Options structure. To create the
options, the topic, queue size, call-back, a tracked object and the queue were required. A
different thread for the new queue was created. This way, it is possible to execute fixed
distance and rotation movements for our needs.

2.3 Navigation to user-specified places: Trials with PT2
To test the basic function of going to places, different tests were conducted to carry objects
in Hobbit's tray from one place to another. To learn about difficulties to navigate in
environments with narrow spaces, we tested PT2 in four settings.

Test 1: Office setting
For our first set of tests we defined three rooms and four places in an office like environment.
Fig 4 shows the room definition result and the positions of the defined places. We asked the
robot to carry an object from each of the places to all the others and the task was
successfully accomplished in 12 out of 13 attempts.

Figure 4: Defined rooms and places (red dots).

Test 2: AAL laboratory

This functionality was also tested in another environment more similar to a real apartment in
the specially designed AAL laboratory at ISTU, TUW. Three different places were defined,
one by the user chair at a table, another one by an armchair and another one at an office
room. The places are displayed in the touch screen and the functionality can be tested by
selecting the desired place. The map and places are shown in Fig. 5. Fig. 6 gives an
example of a typical place defined to be on the preferred side for the user to interact when
sitting in the armchair.

12

 Figure 5: Second test environment and the defined rooms and places.

Figure 6: PT2-D at a place defined in front of an armchair. Note that with PT2 we
change the place definition to be on the side to not block the way of the user out of

the chair.

Test 3: IKEA Home laboratory

Another set of experiments was conducted in another home like environment, the home
laboratory at ACIN, TUW, which has been equipped with furniture by a donation of IKEA
during the robots@home project to conduct tests in home-like settings. The map and the
definition of rooms and places are shown in Figs. 7 and 8.

13

Figure 7: Third test environment and defined rooms.

Figure 8: Third test environment and defined places.

While the first two environments did not cause any problems, the even narrower environment
here caused three problems during the 14 test runs:

 Accuracy of localisation: over longer runs, accuracy drops. While still correctly
localised at large, the robot is in danger of collision and in two cases collided. For
example, then navigating from the corridor to the office, the arm collided at the
corner. Fig. 9 illustrates the situation. In another trial the robot was not accurately

14

localised when approaching one of the user-defined places and collided with an
armchair.

Figure 9: In one test from the corridor to the office, the robot went too close to the

final corner and the arm collided with the wall.

 Missed obstacle due to narrow field of View: The other occasion was when navigating
from the office2 to the corridor. The robot collided with the armchair, since the
armchair changed its position with respect to the map and it was out of the camera
field of view when the robot approached it.

Some of the problems with the navigation through the corridor (Fig. 9) may be explained by
Fig. 10. The problems are caused by a wall that has not been mapped since the robot never
pointed towards this wall in the mapping phase. For example, in the left image of Fig. 10,
when the robot turns around the corner it will not see the left wall and not have it in the map,
which may cause a collision. Similarly, when going back the wall is partially occluded and
hence the robot will not be aware of this obstacle. Consequently, in the set-up procedure for
creating the map for the user trials, we need to make sure all walls are included.

Figure 10: Paths to and from the corridor. One wall is missing in the map and is not
always observed by the virtual lasers. When creating the map for the user trials, the

facilitator needs to make sure all walls are included.

Test 4: User home for pilot trial

15

Finally, navigation to user specified places was tested in a real user apartment. Several
maps were saved and the best one was edited and used. The map and the rooms can be
seen in Fig. 11. Fig. 12 shows the GUI tool for learning places, with the defined places for
these tests. The names were later translated into German for test user.

Figure 11: Test environment in a real apartment and the defined rooms.

Figure 12: Test environment in a real apartment and the defined places.

Due to several special configurations, we had to include no-go areas, which is an existing
feature of MIRA navigation and has been adapted for PT2. Fig. 13 shows no-go areas
defined in the map in order to avoid planning through a priori known inaccessible or

16

hazardous areas. Fig. 14 presents example pictures of the real environment. The step to the
entrance was marked as a forbidden area. The high shelf on top of the kitchen table had
approximately the same height as the robot head, so it was also marked as forbidden.
Furthermore, for increased safety, it was better not to allow the planner to go too close to the
kitchen table. The area close to the window was also risky because of lighting conditions and
because there were thin cables on the floor. Because of the bottom virtual laser current
configuration, the sofas were not well represented in the map (bottom-right corner). So they
were also labelled as no-go areas. It was good to notice this possible problem in advance, so
that other solutions can be found for the final user trials.

Figure 13: No-go areas defined in the real apartment.

Figure 14: Examples of no-go areas defined in the real apartment.

The functionality for going to places selected on the MMUI was tested. The call buttons were
also used. Call buttons were positioned as indicated in Fig. 12.

17

We tested the functionality with 20 test runs. In five runs there have been problems that
indicate clear need for improvements.

 Accuracy of localisation: (same as above) For example, when navigating from the
living room centre to the kitchen, localization was slightly off and the robot scratched
the sofa and passed too close to the kitchen border before arriving at the final
position with some deviation.

 Passing door frames: Using the already bad starting pose, also the next run failed,
since the robot hit the doors frame. Another issue here is that path planning had a
very short path that led from the side into the door frame.

 Moving backwards: this is still allowed only based on memory. When navigating from
the sofa to the kitchen, the path was blocked by people standing in front of the robot.
It went backwards and tried to continue, but it was already too close to the furniture
and it touched it but was able to reach the final position.

This first set of trials at a new, real apartment were very insightful and allowed us to evaluate
the performance of the current system and to gain experience in identifying and solving
problems that may be found in different environments.

2.4 Summary of results in four different environments
The following table summarises the test trials. We conducted 59 test runs in four different
environments with areas between 20and 47 square metres. Mapping actually worked well
with the exception of paying attention to build complete maps. In these four settings we
defined 17 places to conduct the test runs. In the two simpler settings, all runs were
successful. The more narrow and difficult settings showed present limits and 8 of 34 trials
failed.

Table 1: Summary of test runs for navigation in home environments for physical
support of the user.

Environment Estimated size
(m2)

of places # of trials Success rate

1 42 4 13 13/13

2 27 3 12 12/12

3 20 4 14 11/14

4 38 6 20 15/20

Total 127 17 59 51/59

Given the problematic cases in the two more difficult environments, our analysis concludes
with the following recommendations:

18

 Creating complete maps: the facilitators will be trained to make sure maps are
complete when created. This will eliminate problems as highlighted in Fig. 10. This
was already paid attention to in test 4 with success.

 Location of user-defined placed: when defining places together with the user, we
need to make sure that the robot has enough space to turn in this place. This will
cope with the problems encountered in Test 3 (Fig. 9). This was already paid
attention to in test 4 with success.

 Accuracy of robot localisation: the accuracy of the self-localisation is difficult to
supervise. However, there are possible measures to check the accuracy of
localisation, for example, conducting additional robot motions to aid robot localisation
with data from a larger field of view..
A special sub issue here are low sofas: A solution to this problem is to alter the logic
of the virtual laser scans. Right now, we adopted the assumption that all objects
below a certain height are obstacles rather than larger items of furniture or walls. We
will reduce the width of the slice for the virtual laser to detect also low sofas as static
objects which will increase accuracy of driving to places close.

 Improved obstacle detection: The field of view of the RGB-D cameras are limited.
Hence, we use memory to cope with seen obstacles. An adjustment of memory will
allow us to cope with more cases. This will address the issues identified above.
However, it needs to be noted, that the resolution of the camera is limited and hence
not all obstacles may be detected, such as smaller ones. Furthermore, when
approaching the robot from the side, memory will not help.

 Reduced or eliminated backward motion: There are two options to cope with this.
First, backwards motions could be not allowed at all. This may reduce
manoeuvrability but increase security. The second option is to use the capabilities of
the head to look backwards and down. This can be implemented if time and
resources permit.

 Straight navigation to doors frames: safety margins around the robot define how
close it comes to obstacles. If taken too large, the robot may not be able to navigate
through narrow passages. Hence, we try to reduce the margins as much as possible
and still provide safe navigation. When passing doors, this becomes critical. Hence,
we will alter the path planning method to approach narrow doors straight rather than
from the side.

The tests have been very insightful and showed several issues that need to be improved.
The recommendations point out how to resolve these issues and will be the focus of our
future work. Additionally to navigation to places, we tested navigation to the docking station
at the user’s site. It worked in four of five cases and succeeded in the second trial in the case
when the first trial failed. This was before also tested at Metralabs and the other test sites.

19

3 Finding a Known Object
D6.2 reported already the method for learning and detecting object based on RGB-D images
of the camera in Hobbit’s head. Furthermore, we added the publications that document the
scientific work towards the user requirements of detecting objects in difficult environments in
D3.2:

[Aldoma2103] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. Di Stefano and M.
Vincze: Multimodal Cue Integration through Hypotheses Verification for RGB-D
Object Recognition and 6DOF Pose Estimation; 2013 IEEE International
Conference on Robotics and Automation (ICRA), May 6-10, 2013.

[Bajones2014b] Markus Bajones, Daniel Wolf, Johann Prankl, Markus Vincze: “Where
to look first? Behaviour control for fetch-and-carry missions of service robots”;
Austrian Robotics Workshop, 2014.

[Wolf2014] Daniel Wolf, Markus Bajones, Johann Prankl and Markus Vincze: Find my
mug: Efficient object search with a mobile robot using semantic segmentation; 38th
Annual Workshop of the Austrian Association for Pattern Recognition (ÖAGM),
2014.

In this deliverable we report tests of single object detections from learned search locations
using the environments mapped and presented above. The aim is to realistically assess
performance in settings as expected in the user trials.

3.1 Tests for the Bring an Object Scenario
The tests for the “bring an object” scenario were conducted in first three environments as
given above for the navigation tests. Systematic tests in a user home could not yet be made,
since permitted time at the user sites was too short. However, such tests will be conducted
before user trials start. In each environment we defined four search positions.

During the bring object scenario the robot will navigate to the position that has the highest
probability to find the object. This will use the knowledge of where the object has been seen
before respectively knowledge about the typical rooms where a certain object is found. The
robot will plan the shortest path to the selected search position to reduce unnecessary power
usage. An example is shown in Fig. 15.

For our test we set up each scene with clutter. We also place one or multiple known objects
on the table to check if more than one known object can be detected. We count objects only
if they are within the robot’s field of view at the search position. When the robot arrives at the
search positions, it starts the recognition and records, which objects were recognized, which
object were not recognized, and where an object was falsely reported (false positives). We
conducted 10 trials for each search place. Fig. 16 shows the robot with an example scene.
Fig. 17 gives four more examples scenes indicating the typical clutter, object occlusions,
background illumination, and other effects that render object detection difficult in a natural
environment.

20

Figure 15: Paths found from the starting position to all the predefined searching
positions. The last searching position by the entrance desk was selected first for the

Bring Object scenario.

Figure 16: PT2 at one of the search positions and the image taken by the colour camera of
the robot head. There is also a depth image taken and processed.

21

Figure 17: Four example images showing the objects and the scenes with clutter. Note that
objects can have very different viewpoints and scenes include cases with strong background
that render detections infeasible.

A summary is given in the following three tables for the three test environments. There have
been no false positives – the method was tuned to not falsely report object detections. On
the other hand, this leads to more objects going undetected. In the tables we report the
number of successful detection out of the 10 trials each.

22

Table 2: Test results of finding objects in Environment 1 (office setting) for the four Search
Positions (SP#) and the three search runs.

Object
position
/search
run

SP1:
Desk in
hall

of
detec-
tions

SP2:
Office
desk1

of
detec-
tions

SP3:
Office
desk2

of
detec-
tions

SP4:
Office
desk2
second
view

of
detec-
tions

1 Mueller
milch
bottle
choco

10 Mueller
milch
bottle
choco

10 Mueller
milch
bottle
choco

0 Mueller
milch
bottle
choco

0

 handbag 1 Yellow
toy car

9 Tea box 9 Tea box 0

 Felix
ketchup
bottle

10 Strands
mountin
g unit

10 Red mug
with
white
dots

8 Red mug
with
white
dots

10

2 Strands
mountin
g unit

0 Cisco
telephon
e

10 Cisco
telephon
e

0 Cisco
telephon
e

0

 Yellow
toy car

10 OpenCV
book

10 Yellow
toy car

10 Yellow
toy car

0

 Asus
Xtion
box

0 Cleaning
agent
bottle

2 Mueller
milch
bottle
banana

10 Mueller
milch
bottle
banana

0

3 Red mug
with
white
dots

5 Toilet
paper
roll

0 Toilet
paper
roll

0 Toilet
paper
roll

0

 Cisco
telephon
e

10 Water
boiler

0 Cleaning
agent
bottle

9 Cleaning
agent
bottle

0

 Mueller
milch
bottle
banana

10 Red mug
with
white
dots

10 OpenCV
book

5 OpenCV
book

10

23

Table 3: Test results of finding objects in Environment 2 (IKEA home laboratory) for the four
Search Positions (SP#) and the three search runs.

Object
position
/search
run

SP1:
Night
stand

of
detec-
tions

SP2:
Kitchen
shelf

of
detec-
tions

SP3:
Dinner
table

of
detec-
tions

SP4:
Living
room
shelf

of
detec-
tions

1 Red mug
with
white
dots

0 Mueller
milch
bottle
banana

1 Felix
ketchup
bottle

10 Handbag 0

 Handbag 0 Tea box 10 Yellow
toy car

10 Asus
Xtion
box

10

 Mueller
milch
bottle
choco

10 Cleaning
agent
bottle

10 OpenCV
book

10 Red mug
with
white
dots

1

2 Strands
mountin
g unit

0 Handbag 0 Red mug
with
white
dots

10 Mueller
milch
bottle
choco

10

 Tea box 10 Asus
Xtion
box

10 Cisco
telephon
e

8 OpenCV
book

2

 Yellow
toy car

0 Red mug
with
white
dots

0 Felix
ketchup
bottle

7 Cisco
telephon
e

3

3 Cleaning
agent
bottle

0 OpenCV
book

1 Handbag 0 Mueller
milch
bottle
banana

0

 OpenCV
book

0 Cisco
telephon
e

0 Tea box 4 Tea box 10

 Cisco
telephon
e

10 Yellow
toy car

10 Cleaning
agent
bottle

10 Strands
mountin
g unit

1

24

Table 4: Test results of finding objects in Environment 2 (AAL laboratory) for the four Search
Positions (SP#) and the three search runs.

Object
position
/search
run

SP1:
Sofa
table

of
detec-
tions

SP2:
Office 1
desk

of
detec-
tions

SP3:
Office 2
desk

of
detec-
tions

SP4:
Office 2
desk
second
view

of
detec-
tions

1 Red mug
with
white
dots

0 Cisco
telephon
e

10 Handbag 7 Handbag 7

 Cleaning
agent
bottle

10 OpenCV
book

1 Mueller
milch
bottle
banana

10 Mueller
milch
bottle
banana

10

 Asus
Xtion
box

3 Handbag 0 Toilet
paper
roll

0 Toilet
paper
roll

0

2 Mueller
milch
bottle
choco

10 Mueller
milch
bottle
banana

10 Cisco
telephon
e

4 Cisco
telephon
e

6

 Tea box 0 Toilet
paper
roll

0 Cleaning
agent
bottle

10 Cleaning
agent
bottle

8

 Yellow
toy car

9 Handbag 0 Asus
Xtion
box

1 Asus
Xtion
box

6

3 Handbag 2 Asus
Xtion
box

2 Tea box 10 Tea box 6

 Cisco
telephon
e

10 Tea box 8 Yellow
toy car

0 Yellow
toy car

10

 Strands
mountin
g unit

0 Yellow
toy car

2 Mueller
milch
bottle
choco

10 Mueller
milch
bottle
choco

10

The next two tables gives an overview of the detection results in the three environments and
for the different objects used in the trials.

25

Table 5: Summary of detection rate for each object and environment (Env# where #
is 1 to 3; EnvAll refers to the sum of all three Environments).

Object Env1

Env2

Env3

EnvAll

Rate

Asus Xtion box 0 10 20 20 12 40 32 70 0,46

Cisco telephone 20 40 21 40 30 40 71 120 0,59

cleaning agent bottle 11 30 20 30 28 30 59 90 0,66

Felix ketchup bottle 10 10 17 20

27 30 0,9

Handbag 1 10 0 40 16 50 17 100 0,17
Muellermilch bottle
banana 20 30 1 20 30 30 51 80 0,64

Muellermilch bottle choco 20 40 20 20 30 30 70 90 0,78

OpenCV book 25 30 13 40 1 10 39 80 0,49

Red mug with white dots 33 40 11 40 0 10 44 90 0,49

Strands mounting unit 10 20 1 20 0 10 11 50 0,22

Tea box 9 20 34 40 24 40 67 100 0,67

Toilet paper roll 0 30

0 30 0 60 0

Water boiler 0 10

0 10 0

Yellow toy car 29 40 20 30 21 40 70 110 0,64

Total 188 360 178 360 192 360 558 1080 0,52

Table 6: Summary of detection rate for each environment.

Environment # of different objects # of trials Detection rate

1 14 360 52,2

2 12 360 49,4

3 12 360 53,3

Total 14 1080 51,7

While the detection results of slightly more than half the objects are not impressive, this
result was expected and reflects the present state-of-the-art in object detection methods
when applied to the wild in realistic settings. Furthermore, we know from the detection
methods (as given in D6.2, D3.2) that feature-less objects such as toilet paper and water
boiler are difficult to distinguish from the background. Similar difficulties give handbags if they
are rather feature-less like the one used. On the other hand, larger objects with clear texture
such as the ketchup, Mueller bottles, and tea box give the expected satisfactory to good
results. And certainly we are limited by the limitations of present camera systems such as
limited dynamic range (looking against windows introduces highlights and reflections), direct
sunlight stops depth perception on the Kinect, and resolution is limited in both colour and
depth perception. However, the steady advance in camera technology brought us already to
the level where we are right now. Hence, we can expect more and more advances and
improvements.

26

4 Grasping Known and Unknown Objects
The user requirements focus on grasping any object from the floor or bring an object from a
table or desk. In the first case objects may be not known, while the second task follows the
finding of a known object.

D6.2 reported on the method used to detect shapes of graspable objects and the method of
planning and executing the grasp – the HAF (Height Accumulated Features) features. The
full method in all details is described in

David Fischinger and Markus Vincze: Learning Grasps with Topographic Features;
submitted to IJRR – Int. Journal of Robotics Research. Attached in the Appendix.

The publications gives a series of tests and shows that the method works for different robot
embodiments. Furthermore, we present tests within the HOBBIT scenario in

David Fischinger, Astrid Weiss and Markus Vincze: “Pick up that object": Enabling
Robust Object Grasping for Social Service Robots; draft paper for future submission.
Attached in the Appendix.

Finally, we ported the method to PT2 and present first grasping results. Examples are given in
Figs. 18 and 19. A summary of the grasp trials is given in the table below. In total 20 trails with 6
different objects have been made.

Table 7: Summary of first grasping trials with PT2.

Object Trials failed /
successful

Comment

Screwdriver 1/2 Object is small and difficult to detect. In one trial object was
picked up by gripper but during movement to tray it
slipped out of the gripper due to torque forces.

Cup 1/2 In one trial gripper did not close completely. Gripping force
needs to be increased.

Aspirin 2/1 Object detection was not accurate enough and the tip of the
gripper hit the object. We consider to increase gripper width
and

Toy car 1/2 In one trial gripper did not close completely. Gripping force
needs to be increased.

Newspaper 1/3 In one trial gripper did not grasp in the center and strongly
enough and object rotated out of gripper.

Cap 1/3 In one trial gripper did not close completely. Gripping force
needs to be increased.

Total 7/13

The first integration of the method developed by David Fischinger and submitted to IJRR
indicates some of the expected problems. The issues given in then table have their reasons in
the resolution of the camera, the gripper mechanism, and the hand-eye calibration.

27

Regarding camera resolution the fact is that the camera has been placed as low as possible for
the application. This has been known and the compromise has been selected on purpose to
learn about the limits of present technology. As the results in the IJRR submission show, perfect
camera placement or the use of an improved camera will highly improve performance. Given
the present rapid development, it can be expected that any moment such an improved sensor
will be available. For example, the Kinect 2 sensor of Microsoft seems to be such a sensor, as
first trials indicate. It cannot yet be incorporated into PT2.

Regarding the gripper mechanism, the new gripper needs to be adjusted in closing strength.
Since the Finray gripper in itself is compliant, a stronger gripper force than applied at present
will resolve the issues.

Finally, hand-eye calibration is limited again by the camera resolution and depends on the
repeatability of the arm. Regarding resolution, see the comment above and we expect
improvement. The repeatability of the arm is an aspect that is studied by HELLA and the arm
manufacturer IGUS. Since it is a novel arm, we expect good improvements. Furthermore, it
would be interesting to develop a method that detects the hand position just before the object is
grasped. ACIN is working on such a method, however, due to limited budget it is not certain that
this method can be realised within the next month.

And finally, it should be noted that the trials presented a first trial only. Given 65% success rate,
we would grasp more object using two trails. With future improvements the aim is to reach a
higher success rate. However, note that the assumption of the project was that we will not
achieve perfect robot performance given present state of the art methods for the given cost
range but develop the mutual care concept to make the user aware that her robot will not be
perfect. The aim is that the robot will help the user much more often with picking up objects than
not, and this is within reach as indicated by the trials.

28

Figure 18: Tests with PT2 grasping different objects: Aspirin, toy car, mug, and screw
driver.

29

Figure 19: Transferring the grasped cap into the tray.

30

5 Conclusion
The aim of this Deliverable was to describe the progress with respect to physically support the
user by navigating the robot to the positions requested by the user, by finding known objects for
the user, and by picking up objects from the floor.
We presented the implementation of the navigation capability on PT2 (Section 2) and trials to
test the functionality. 59 test runs have been made in four environments. This led to six
recommendations for the future improvement of navigation. Due to the absence of a suitable
submission deadline, this was presented in the section and may be later used for a publication,
e.g., a later submission (October 2014) to ICRA.
Section 3 then presented tests for the scenario of finding an object. 1080 trials to detect objects
in three different environments and 12 places have been conducted. Detection rate is sufficient
but clearly indicates the difficulty of present methods to work in realistic settings. To indicate this
potential for future work is very valuable. However, more comparisons and tests are needed to
suffice a publication. We will aim for this including data from future tests.
Finally, we presented the work towards the grasping objects from the floor or a table. In
particular grasping from the floor has been identified as a critical and most wanted requirement
of the users. This is presented by two publications attached in the Appendix. [1] presents the
method of learning topological features to represent grasp points. The advantage of this method
is that it works on many different robot embodiments. We then show in [2] the use of this
method for the HOBBIT robot. Finally, we conducted 20 trials with HOBBIT PT2. The trials
indicate future work regarding the grasping force, which was set much too low at present, the
hand-eye calibration, and coping with the limited camera resolution.
In all scenarios we are faced with the limitations of present camera systems such as limited
dynamic range (looking against windows introduces highlights and reflections), direct sunlight
stops depth perception on the Kinect, and resolution is limited in both colour and depth
perception. However, the steady advance in camera technology brought us already to the level
where we are right now. Hence, we can expect more and more advances and improvements.
One of the aim of the HOBBIT projects is to learn about the detailed problems yet to be faced
and to investigate with the users what level of technical ripeness needs to be achieved to be
acceptable. For this the PT2 user trials will proof perfect.
In summary, the tests clearly show where future work is needed to realise the scenarios as
identified in D1.6 to achieve the Fetch & Carry scenarios with the aim to bring physical
support for older adults.

31

6 Appendix

[1] David Fischinger and Markus Vincze: Learning Grasps with Topographic
Features; submitted to IJRR – Int. Journal of Robotics Research.

[2] David Fischinger, Astrid Weiss and Markus Vincze: “Pick up that object": Enabling Robust
Object Grasping for Social Service Robots; draft paper for future submission. Attached in the
Appendix.

Learning Grasps with Topographic Features

David Fischinger and Markus Vincze
Automation an Control Institute
Vienna University of Technology

Vienna, Austria
Email: {df, vm}@acin.tuwien.ac.at

March 16, 2014

Abstract

We present a method for grasping unknown objects, even from piles
or cluttered scenes, given a point cloud from depth camera input. Our
method is based on the topography of a given scene and abstracts
grasp-relevant structures to enable machine learning techniques for
grasping tasks. We describe Height Accumulated Features (HAF) and
their extension, Symmetry Height Accumulated Features (SHAF), and
motivate the approach. We investigate grasp quality using an F-score
metric. We demonstrate the gain and the the expressive power of HAF
by comparing its trained classifier to one that resulted from training on
simple height grids. An efficient way for calculating HAF is presented.
We describe how the trained grasp classier is used to explore the whole
grasp space and introduce a heuristic to find the most robust grasp.
We show how to use our approach to adapt manipulator opening width
before grasping. In robotic experiments we demonstrate different as-
pects of our system on four robot platforms: A Schunk 7-DOF arm,
a PR2, the mobile service robot Hobbit and a Kuka LWR arm. We
perform tasks for autonomously unloading a box, clearing the table,
tidying up the floor and grasping single objects. Thereby we show that
our approach is easily adaptable and robust with respect to different
manipulators. As part of the experiments we compare our algorithm
to two state-of-the-art methods and show significant improvement of
34% (single object) and 29% (cluttered scene) over one state-of-the-
art method. Concrete examples are used to illustrate the benefit of
our approach compared to established grasp approaches. Finally we
show advantages of the symbiosis between our approach and object
recognition.

1 Introduction

Robotic grasping is a well examined research area, but its full potential is
by far not explored yet. A large part of related work deals with object

1

recognition ([1], [2], [3]) and object categorization [4] and the subsequent
application of pre-calculated grasps for this object or object type. Using
known models is one possibility to overcome the issue of incomplete data
perceived from single views of a robot. The availability of object models
enables use of force and form closure grasp quality metrics ([5], [6], [7]).
Even assumed that with sufficiently large model databases and still working
recognition algorithms grasps for unknown objects could be interpolated,
object recognition approaches would fail in cluttered scenes. State of the
art segmentation and recognition methods currently fail to deliver reliable
results for scenarios like the ones depicted in Fig 1 (e.g. for the one colored
trouser with completely variant shape if it is placed on a pile of random
black clothes).

Figure 1: Robots used for different kinds of grasp experiments, clockwise:
Hobbit, a household robot clearing the floor with a 5-DOF arm and a Fin
Ray gripper; a Schunk 7-DOF arm with hand prosthesis emptying a box in
real and simulation; a Kuka LBR with Michelangelo hand prosthesis; a PR2
clearing the table.

Besides object recognition, other approaches try to identify simple geo-
metric forms to enable grasp point detection ([8], [9]), but this also requires
robust segmentation. A third popular approach is based on learning grasps
using features from 2D images ([10, 11, 12, 13]). Here the features used for
learning are not grasp specific, due to the missing dimension topographic

2

surface data is not taken into account.
In this article we present features developed especially for grasping. Our

method abstracts topographical information from perceived surfaces of un-
known objects, hence enabling to learn how to grasp objects, even if they
are unknown or in a heap of objects. Thereby our approach enables grasp-
ing of known and unknown objects even in cluttered scenes with limited
single views of a robot. Key advantages of our method are the avoidance of
segmentation, an “integrated path planning” which rules out grasps where
no approach path would be possible, no guessing of occluded shapes, an
efficient way to calculate Height Accumulated Features using Summed Area
Tables and a weighting system to enhance the robustness of the selected
grasps.

• Segmentation Independent: Our approach can solve complex tasks
like tidy up the floor from piles of objects or autonomously emptying a
basket filled with unknown objects without the need of segmentation.
It can be seen as complementary approach for methods which need
segmented input, such as for Superquadric fitting or as preprocessing
module for object recognition by separating one object from a pile of
items.

• Integrated Path Planning: The majority of recently published grasping
algorithms (e.g. [9]) handles grasp planning and path planning inde-
pendently. Grasp approach directions and grasp points are calculated
firstly, path planning with computation of inverse kinematics and ob-
stacle avoidance are done afterwards. In contrast, our method has
learned to select grasp hypotheses which result in collision free local
paths for the manipulator used and the given approach vector.

• Use Known Shapes Only: A complete and correct object reconstruc-
tion is certainly an advantage for determining grasps, but state-of-the-
art algorithms do not work reliably enough for the inherent degree of
complexity of the cluttered scenes we are aiming to explore. Our ap-
proach focuses on grasps on perceived surfaces where the manipulator
can approach objects without the need to estimate the surface of the
object, which is facing away from the camera (compare Fig. 2).

In the next section we discuss further work, related to grasping unknown
objects. Section 3 describes the idea, motivation, and calculation of Height
Accumulated Features and Symmetry Height Accumulated Features. Sec-
tion 4 explains the process how feature values are used to determine opti-
mal six dimensional grasp configurations. We describe the machine learning
methods used, a weighting heuristic to enhance the robustness of grasps,
our technique to explore the entire grasp space using a trained classifier and
the fine calculation of grasp points given our grasp representation using a

3

simulation environment. In Section 5 we analyze most efficient features,
discuss the effect of Symmetry Height Accumulated Features and show the
additional gain of HAF by a comparison to learning grasps directly on height
values. In Section 6 we use our framework to extend grasp options by taking
into account the opening width of the manipulator. The article closes with
an evaluation of our approach on four different robotic platforms considering
different aspects per task.

2 Related Work

The challenge of grasping unknown objects has been examined in numer-
ousness works. A great deal of them tries to approximate original object
shapes. Miller et al. [8], Huebner and Kragic [14] and Przybylski et al. [15]
used shape primitives like boxes, spheres, cylinders and cones to approxi-
mate object shapes. Goldfeder et al. [16] and Varadarajan and Vincze [9]
extended this approach and used Superquadrics as a more general basic ge-
ometric form. The resulting shape primitives were used to limit the amount
of candidate grasps to find the most stable set of grasp hypotheses. Ap-
proaches from Bohg et al. [17] and Rao et al. [18] are based on the obser-
vation that many objects possess symmetries and use this assumption for
object completion before grasp calculation.

Saxena et al. ([10, 11]) proposed supervised learning with local patch-
based image and depth features for grasping novel objects in cluttered en-
vironments. Jiang et al. [12] improved this work and added the capability
to learn optimal gripper opening width. The focus lies on learning features
from 2D images, but one feature is based on a comparison of object heights in
predefined rectangle regions (in further we refer to this method as “Rectan-
gle Representation”). This related feature, the popularity and performance
of the approach in recent years and the ability to work in cluttered scenes
made this work an excellent choice to compare our work with. Le et al. [13]
extended the method from [11] to accommodate grasps with multiple con-
tacts and achieved a success rate of 80% for desk clearing experiments with
2 to 8 objects counting success/failure of the first grasp attempt per object.

Close to our work is the idea of Klingbeil et al. [19]. They propose a grasp
detection approach for a two finger gripper to autonomously grasp unknown
objects based on raw depth data. Their method tries to find a pattern in
the scene that fits into the interior of the end-effector by maximizing the
contact area between the robot’s gripper and the perceived point cloud. This
approach treats grasping as a shape matching problem similar to the work by
Li and Pollard [20] but does not require object models. Another noteworthy
shape-matching approach related to our research is the work from Herzog et
al. [21]. They proposed a template-based grasp selection algorithm operating
on heightmaps which uses demonstrated grasp configurations and generalizes

4

them to grasps for novel objects. Katz et al. [22] deal with the problem of
clearing a table. They achieved a grasp success rate of 53% for cluttered
scene and learn push and pull actions in addition. [TODO: den bla-satz von
astrid verwenden? siehe ihr kommentar]

3 Topographic Features

In this section we describe and motivate two new feature types based on the
topography of objects or scenes. Height Accumulated Features (HAF) were
developed especially for abstracting grasp relevant information. Symmetry
Height Accumulated Features (short form: Symmetry Features or SHAF)
are an additional feature type, to solve specific problem cases of the basic
classifier. The basic concept of HAF was first published in [23], the concept
of SHAF in [24]. In Section 5 we show improvements over previous work
regarding feature selection and performance.

3.1 Motivation of HAF

In recent years learning of grasps became very popular [25]. Applying ma-
chine learning directly to RGB-D data is still impractical due to the huge
number of perceived points in a point cloud and the six dimensional grasp
output space. To reduce complexity numerous approaches deal with learning
on 2D images taking into account colors and intensity values. Although the
human brain can detect potential grasp points from images (and hence this
approach could be promising in the future), simple features based on image
patches seem to have clear limits for grasping (see Section 7.5.2). There-
fore we developed a new feature type which reduces the complexity of point
cloud input, increases the structural value of input information as shown in
Section 5.1 and is well suited for grasp-related machine learning due to the
employment of grasp-relevant topographical information. Another challenge
for learning grasps is the (at least) six dimensional grasp output space (3
parameters for position, 3 parameters for orientation) where all six param-
eters are strongly related. In Section 4.3 we describe our method to explore
the whole grasp space using a trained grasp classifier.

The HAF approach is based on the observation that for grasping from
top, parts of the end-effector have to enclose an object and hence go further
down than the top height of the object. Unlike other approaches we do not
try to guess the shape of partially visible objects. Firstly, because this will
fail in cluttered scenes or for special objects. And secondly, because our
approach is based on the observation that a guess of the object shape is
often not needed, for example if one surface is known and the manipulator
can be placed around that surface: Fig. 2(a) shows a picture from a typical
view of a robot. For one gray and one yellow object, only the rectangular top

5

(a) Top view from
robot perspective

(b) box form (c) V-form (d) I-form (e) Fragile
Grasp

(f) Stable
Grasp

Figure 2: HAF Motivation: in 2(a) we see two rectangular surfaces of a gray
and a yellow object from a typical robot’s top perspective, no side surfaces
are visible. Fig. 2(b)-2(d) show grasps for different object shapes, which all
have the same rectangular top surface shape. Fig. 2(e) shows an unstable
grasp some force closure based simulation environments would recommend
and 2(f) shows a stable top grasp a human would execute even if only the
top surface of the object was perceived.

surfaces are visible. Fig. 2(b)-2(d) show different scenarios for grasping when
only the surface is known and a manipulator goes down on the object and
closes: in Fig. 2(b) the object is box-shaped and the manipulator touches
the object on the body center instead on the rim. In 2(c) the hand more
or less adapts to the object form. And even if the object roughly consists
of the top surface (see Fig. 2(d)) a grasp would succeed if there is enough
space to place the fingers around it. Despite the knowledge gap, even a
human would not grasp only at the visible object parts like depicted in 2(e)
(like some force closure based simulation environments would recommend,
even if the whole object model is available)[TODO: citation/reference], but
would go further down with his hand and use tactile feedback to stop the
closing movement (Fig. 2(f)).

Our idea (also stated in [23] and [24]) is to define small regions and
compare average heights of these regions using discretized point cloud data.
The height differences give an abstraction of the shape of the objects that
enables the training of a classifier (supervised learning) to determine if grasp-
ing would succeed for a given scene. For explanatory reasons consider the
special case of top grasps (vertical approach direction of manipulator) of
an object on a table. The term height can then be used intuitively and
measures the perpendicular distance from the table plane to the top points
of the object. A force or form closure grasp can only be achieved if parts
of the manipulator will go further down to the table than the top of the
object. Hence the region of the object top will be higher in average than
the area where the manipulator fingers are positioned. For faster calculation
we discretize the point cloud, i.e. we generate a height grid H where each
1x1cm cell saves the highest z-value of points with corresponding x- and y
values (see Fig. 3). One Height Accumulated Feature is now defined as two,
three or four regions Ri on the height grid together with a weighting factor

6

wi for each region. A feature value is defined as the weighted sum of all
regions. So the jth HAF value fj is calculated as

fj =

nrRegionsj∑
i=1

wi,j · ri,j (1)

with
ri,j =

∑
k,l∈N:(k,l)∈Ri,j

H(k, l) (2)

where nrRegionsj is the number of regions for feature fj . Ri,j indicates
ith region for jth feature and is defined by the set of all pairs of height grid
cell indices belonging to the region.

The HAF vector f is the sequence of HAF values:

f = (f1, f2, . . . , fnrFeatures) (3)

Figure 3: Shows the gray Height Grid resulting from point cloud disretiza-
tion and an example feature with two regions. Region R1 is the green inner
region, region R2 is composed of the red and the green area. For each grid
cell of the regions the height is summed up per region. Each region sum is
weighted with an individual factor and the sum (difference) of all regions
(here two) gives the feature value.

For primarily experiments we focused on features with two overlapping
regions, where one region is completely inside the other region and a weight-
ing factor wi,j is chosen such that the feature value is zero if both regions have
the same average height, bigger than zero if the inner region is higher, and
smaller than zero if the inner region has lower height in average. For these
features the before mentioned intuitive interpretation holds. In Section 5 we
show that more complex features with three or four regions or Symmetry
Features lead to even higher discriminative results measured with F-score
evaluation [26]. Overall we tested about 71,000 features (70,000 of them
automatically generated) for the experiments in this work and selected the
top 300 to 325 with F-score selection for training a classifier weighing up
time against detection performance.

7

The representation of height grids is of significant importance to our
approach. To accelerate computation, we use accumulated height values
for given scenes. This principle was first introduced as summed area tables
in [27] for texture mapping in computer graphics and was introduced as
“integral images” by Viola and Jones [28] to the vision community and used
successfully for real-time face detection.

Instead of an initial height grid H we calculate an accumulated height
grid AH, where each location (x,y) of AH contains the height sum above
and to the left of (x,y) in the grid.

AH(x, y) =
∑

x′≤x,y′≤y
H(x′, y′) (4)

Using height accumulated rectangular regions, each region sum can be
computed with four or fewer array references, see Fig. 4.

Figure 4: To calculate the accumulated heights of region A a single AH
reference is needed: AH(A) = AH(x,y), Area D requires four: AH(D) =
AH(x2,y2) - AH(x2,y) - AH(x,y2) + AH(x,y)

3.2 Symmetry Height Accumulated Features

For special constellations such as a small object on top of a box on a table
(Fig. 5(b)) our HAF approach favors grasps at the edge of the box instead
at the small object. HAF have the drawback that they are based on average
heights of nested regions and hence there is no symmetry check when feature
values are calculated. The same feature value can be achieved if the center
region height exceeds both side region heights by x or if the center region
and one side region have equal heights and exceed the second side region by
2x (see Fig. 5(a) for illustration). The feature value is no indication if two
fingers of the gripper could go deeper than the object center on opposite
sides of the object. This leads to false positives when using HAF for grasp
detection e.g. at edges of an closed box. For clearing a table scenarios
this kind of wrongly detected grasps did never occur due to our weighting
system and the constellation and size of objects. As long as there is an easily
graspable object on the table, this object is grasped first. Nevertheless we
saw the need for improvement and decided to extend HAF by an additional
feature type: Symmetry Height Accumulated Features. Symmetry Features

8

(a) HAF-Problem: equal feature values (b) Problem Impact

Figure 5: SHAF-Motivation (left): For the depicted feature with a green and
a red region the feature value would be equal for both piles of handkerchiefs,
but only the left pile is suited for a grasp for the depicted manipulator. The
picture on the right shows the impact of this HAF property: a bad grasp
was detected at the edge of a box

Figure 6: Symmetry Height Accumulated Feature: a typical example of the
new feature type SHAF that solves the shown deficiency. All SHAFs have
three equally sized, disjunctive regions

have three disjunctive regions of equal size as depicted in Fig. 6 where rr,rg,rb
are the accumulated heights on the region grid. The feature value f is defined
as follows:

f =

{
min(rg-rr, rg-rb) . . . if rg > max(rr, rb)

-1 . . . else

So we assign the minimal distance of accumulated heights between center
region and side regions if the center region is in average the highest, and -1
otherwise. Note that this function is either positive or -1. In Section 5.2 we
discuss the impact of Symmetry Features for our grasp classifier.

4 From Classification to Real Grasps

In this section we describe the process of selecting best grasps in the six
dimensional grasp space using our topographic features. This process is

9

in principle the same as stated in [23] but is summarized here for reasons
of completeness and with some clarifications including a graphical system
overview. First we describe the learning process for grasping (Section 4.1).
Then the weighting heuristic to achieve more robust grasps (4.2) is explained.
Finally we show our method to explore the whole grasp space (4.3), and
show how fine calculation of grasp points and path planning is done with
the OpenRAVE simulator (4.4).

Figure 7: System Overview: This process diagram shows the steps of our
grasping pipeline. For simplicity the presentation shows only a solution
for fixed manipulator rotation, tilt angle and gripper opening width. The
point cloud of a scene is discretized first. To evaluate different manipulator
roll/tilt angles and gripper opening widths, the point cloud has to be trans-
formed before discretization (not depicted). For each grasp hypothesis, a
feature vector of length n (number of features) is calculated. Then a trained
grasp classifier is used to get the grasp classification grid. Green indicates
possible grasp positions. A weighting system evaluates the grasp quality,
where better grasp positions are indicated by higher (green) bars. The over-
all (including detected roll, tilt, gripper width) top rated grasp is sent to the
simulation environment OpenRAVE where the detailed grasp planning (how
close the manipulator can approach the object) is done. For possible grasps
OpenRAVE sends the trajectories for path planning to execute grasping on
the actual robot.

4.1 Grasp Classification Training

To train a grasp classifier we gathered 450 positive grasp scenes and 250
negative grasp scenes. A scene was composed of one ore more objects on

10

a table with z-axis perpendicular to the table and origin at the table sur-
face. For supervised learning we labeled the 450 positive examples, to be
more specific: we labeled a x,y position such that a manipulator (in our
case an Otto Bock hand prosthesis) positioned above the objects (with the
tool center point at x,y) and oriented in a way that the line between the tip
of the thumb and the tip of the forefinger is aligned with the x-axis, would
get a stable grasp of an object by approaching the object (approach vector
of the manipulator parallel to z-axis) up to 1cm and closing the fingers af-
terwards. Fig. 8 illustrates the actual classification task. The 250 negative

Figure 8: Our grasp classifier learns (supervised learning) if a hand motion in
approach direction (black arrow) with subsequent closing of the fingers (1cm
before manipulator-object collision) would result in a stable grasp. Note
that the manipulator did only influence the training examples regarding
scale. Training examples wouldn’t change for other two finger grippers.

grasp scenes were labeled at positions with hardly any chance of a successful
grasp. We used the methods of scaling, mirroring, truncating, and inverting
to generate overall 8300 positive and 12,800 negative grasp example scenes.
HAF and SHAF values were calculated for overall more than 21,000 exam-
ples and used to train a SVM classifier with radial basis function kernel in
the implementation of LIBSVM [29].

4.2 Grasp Selection - Weighting System

For real life scenes the trained grasp classifier typically does not return an
isolated grasp position, but instead a bunch of potential grasp points in a
region (i.e. green area in the Grasp Classification Grid of Fig 7. Step 5).
Generally a point centered at such a grasp region is a good choice for a
stable grasp. Therefore we developed the following weighting system. Each
point classified as good grasp position is evaluated by

v(r, c) =
∑
x,y∈N

Igrasp(x, y) · wr,c(x, y) (5)

where r, c indicate the actual row and column of the grasp location (grasp
hypothesis) in the grid. I is the indicator function for a grasp point:

Igrasp(x, y) =

{
1 if grasp at location (x,y)

0 if no grasp at location (x,y)

11

The following table gives the weighting factors wr,c(x, y) for a grasp
hypothesis GH.

Table 1: Weighting values for evaluation of grasp hypothesis GH

1 2 3 2 1

2 3 4 3 2

1 1 3 4 GH 4 3 1 1

2 3 4 3 2

1 2 3 2 1

In 2000, Bicchi and Kumar [30] identified a lack of grasp approaches that
are robust to positioning errors. This practical weighting method enhances
the robustness and stability of grasps. An example outcome of this weighting
is shown in Fig. 7, in “Weighted Grasp Hypotheses”, where the height of
the green bars indicate grasp quality.

4.3 Grasp Space Exploration

Using our grasp classifier in combination with the weighting system we re-
ceive the best grasp point for a given manipulator orientation and a top
grasp. Our technique to explore the whole grasp space is as follows.

4.3.1 Roll:

To get grasps for different hand rolls β, i.e. different angles for manipulator
rotations about the manipulators approach direction, we rotate the initial
point cloud iteratively (by rollStep = 15 degrees) about the vertical z-axis
up to 180 degrees, make a new accumulated height grid and start the (S)HAF
based grasp point detection on this data. After selection of the top grasp
points for the rotated scene, grasp points are transformed to the original
world coordinate system. By use of a roll angle range [β − rollStep/2, β +
rollStep/2] in the simulation environment and testing with manipulator
rotation β and β + 180◦ simultaneously, we achieve a sound exploration of
all rolls.

4.3.2 Tilt:

In order to widen the domain from grasps with vertical approach direction to
grasps with tilted approach direction, we transform the point cloud analog to
the roll calculation with tiltStep = 20◦. After detection of good grasp points
on this data, the transformation of grasp points and tilted approach vectors
is inverted to get coordinates is the original world frame. By combining roll

12

and tilt manipulations (i.e. consecutive application of the transformation
matrices) we obtain grasps from all orientations.

4.4 Grasp- and Path Planning in Simulation

After applying the weighting algorithm from Section 4.2 we select the top
grasp hypothesis from all roll-tilt combinations and use the OpenRAVE sim-
ulator for path planning including determination of an appropriate distance
between the manipulator and the object before closing the manipulator.
OpenRAVE tries to approach the object mesh (i.e. unsegmented mesh of all
objects in the scene) using the calculated approach vector and manipulator
roll angle until a collision occurs. Then it sets back the manipulator by a
standoff value which is dependent on the object position: in recent work we
do not use a fixed standoff of 1 cm but start with a standoff value of 1 mm.
If this standoff leads to a collision of the gripper fingers with the table top or
ground, the standoff is increased until the closing fingers do not collide with
the table or ground anymore. Then the actual grasp points, i.e. contact
points of fingers in simulation with the object mesh, are calculated. From
the resulting hand position OpenRAVE calculates the manipulator position
7 cm away and searches for a collision free path to place the manipulator
there. For the last 7 cm to the object OpenRAVE calculates a straight path
to the object if one exists. 7 cm was chosen as practical trade-off between a
higher grasping robustness (regarding calibration inaccuracy or incomplete
data) achieved by a straight approach trajectory with fixed manipulator
orientation, and the challenge to find inverse kinematics solutions for such
trajectories.

To make the system more flexible the calculated approach vector and
manipulator roll angle are varied, by± 1

2×tiltStep and± 1
2×rollstep degrees

respectively, to improve the possibility of finding a kinematic solution.

5 Evaluation of Features and Classifier

[TODO: rephrase] In this section the feature quality is analyzed by the use
of the F-score measurement [26] and improvement is shown compared to
previous work. To give a thorough description of our approach, we mention
two results from earlier work ([23], [24]): The grasp classifier is evaluated. In
an evaluation we show the information gain obtained by HAF by comparing
a classifier trained with HAF to one classifier trained directly on height grids.
We also analyze the impact of Symmetry Features for the grasp classifier.

5.1 HAF Classifier vs. Heights Grid Classifier

In [23] we claimed the additional information value of HAF. To prove this
statement, we compared our SVM classifier trained with HAF against a

13

SVM classifier that was trained using descretized heights only. We used
14x14cm grids for training, hence we had 196 Height Features. For training
purposes we used clearly distinctive scenarios, i.e. positive training exam-
ples presented easy grasp situations, and negative examples of situations
where grasp execution was impossible. Since the grasp classifier showed an
accuracy of more than 99% for simple scenes, we gathered test scenes which
were harder to classify, to provide a dataset which enables a meaningful
comparison. E.g. a positive grasp example was not exactly centered at the
rim of a bowl, but with a 2-3 cm offset, in practice this situation would still
lead to a successful grasp but the classification gets harder. We gathered
50 positive and 50 negative test examples and generated overall 3928 test
cases. Results are shown in Tab. 2.

Table 2: Grasp classification success rate: HAF vs. Grid-Heights
Feature Type Success Success in %

Grid-Heights 2516/3928 64.05

HAF 3368/3928 85.74

Notably, all HAF values are calculated out of the 196 height values, still
the data processing (HAF generation) results in a 21.69% improvement of
classification success rate on a hard test data set.

5.2 HAF vs. SHAF

To examine the impact of Symmetry Features we tested our SHAF-Classifier
(HAF plus Symmetry Features) on the same test set. An accuracy rate of
74.31% could be achieved. The main reason for this disappointing outcome
was the difference of scenarios in test and training examples. For the test
data set we added many test cases like the one motivating us to develop
Symmetry Features (e.g. a big closed box). The training examples were not
changed and did not include similar scenes. After adding training examples
with similar scenes (e.g. a closed box where a point at the edge of the box
was labeled as bad grasp center), we achieved an accuracy rate of 85.50%.
Instead of adding further training examples to beat the accuracy rate of the
default HAF classifier, we analyzed the outcome (since missing training data
is no sufficient explanation why the HAF-classifier had a higher accuracy rate
than the classifier trained with HAF and SHAF). Our analysis exposed that
HAF&SHAF classified negative examples with success rates higher 90%, but
performed badly regarding positive examples. Deeper analysis showed that
HAF&SHAF is more sensitive on grasp situations. A rim of a bowl with 2
to 3 centimeters offset with respect to a manipulator center results easily in
negative classification, although few centimeters offset for a bowl would still
be sufficient for grasping. Since we regularly got several potential grasps

14

during experiments, we see tougher constraints for selecting positive grasps
not as a drawback. So the detected grasps are even more reliable.

5.3 Top Feature Analysis for HAF & SHAF

For the experiments in Section 7.2 and Section 7.3 302 out of 35,000 features
were selected balancing time performance against classification quality. Fea-
ture values were calculated by (1). For the tests presented in Section 7.5
21 additional Symmetry Features were added to increase classification re-
sults. By improving a generation function for features with two regions and
manually defining further features with three and four regions, including
Symmetry Features, we could select new features with significant higher
F-score values compared to previous work.

F-score [26] is a technique which measures the discrimination power of
features. Given training vectors xk, k = 1, ...,m, if the number of positive
and negative instances are n+ and n−, respectively, then the F-score of the
ith feature is defined as

F (i) =

(
x
(+)
i − xi

)2
+
(
x
(−)
i − xi

)2
1

n+−1

n+∑
k=1

(
x
(+)
k,i − x

(+)
i

)2
+ 1

n−−1

n−∑
k=1

(
x
(−)
k,i − x

(−)
i

)2 (6)

where xi, x
(+)
i , x

(−)
i are the average of the ith feature of the whole,

positive, and negative data sets, respectively; x
(+)
k,i is the ith feature of the kth

positive instance, and x
(−)
k,i is the ith feature of the kth negative instance. The

numerator indicates the discrimination between the positive and negative
sets, and the denominator indicates the one within each of the two sets.
The larger the F-score is, the more likely this feature is more discriminative.

In Tab. 3 we compare F-scores of the previously used 302 features to
the new top 302 features after feature selection. We tested F-score on two
datasets. The first dataset had 13692 very clear (easily distinguishable be-
tween possible and impossible grasp) instances. The second dataset includes
overall 17620 positive and negative examples that are more difficult to clas-
sify. Average F-score could be increased from 2.04 to 3.78 on the first dataset
and from 0.54 to 1.57 on the second one.

Using cross validation we could show (Tab. 4) that even for the second
dataset the 20 top ranked (new) features are sufficient for a 100 percent
success rate for classification.

The (S)HAF top 20 list with respective F-score values are shown in Fig. 9
and the weighting factors for regions of all non Symmetry Features can be
seen in Tab. 5. From the top 20 features 10 are Symmetry Features (and
even 9 from the top 12). From the top 20 features only two (ranked 19 and
20) were generated automatically with two regions and with the intuitive

15

Table 3: F-Score comparisson between new top 302 features and previous
302 features from [24] on two data sets

DataSet F-Score of: MIN MAX MEAN MEDIAN

1 Old Features 1.16 7.69 2.04 1.94

1 New Features 2.16 7.92 3.78 3.73

2 Old Features 0.21 1.88 0.54 0.50

2 New Features 0.80 2.76 1.57 1.60

Table 4: Grasp classification success rate for top ranked features tested on
dataset 2

Features Success rate in percent

2 97.599

3 98.048

5 98.252

6 98.967

10 99.767

12 99.796

20 100.000

interpretation (“if the center is higher, it is good to grasp there”). For three
other features with two regions the weighting emphasis was on the bigger
region, meaning that the inner region had to be higher than the outer region
to receive a feature value of zero. From the remaining features three have
three regions and two have four. These results show that with a higher
complexity of features, where an intuitive interpretation is not that easy
anymore, better results can be achieved.

6 Pre-Grasp Gripper Width Calculation

[TODO: leading-in sentence?] In Fig. 23(a) a situation is depicted were
grasping with an initially fully opened manipulator would not succeed be-
cause the manipulator cannot reach the grasp position due to collisions with
obstacles. In this Section we present how we extended our system to learn
grasps in a seven dimensional grasp space, showing how to determine a suit-
able opening width for target approaching of the manipulator by iterative
use of our approach.

The initial idea of HAF was to learn and detect areas where parts of
a manipulator can enclose the center of object parts. The classifier and
the weighting system find good grasping positions for a gripper with known
opening width. To test if a partly opened manipulator can enclose an object
we use our approach with only small adaptations: by scaling the point
cloud with respect to the degree of manipulator closing we can simulate

16

(a) F-S.:
14.69

(b)
14.23

(c) 9.53 (d) 7.92 (e) 7.91 (f) 7.69 (g) 7.31 (h) 6.82 (i) 6.56

(j) 6.32 (k) 6.13 (l) 6.09 (m) 5.81 (n) 5.80 (o) 5.77 (p) 5.73 (q) 5.50 (r) 5.49

(s) 5.35 (t) 5.32

Figure 9: Top 20 Topographic Features (HAF, SHAF) with F-score values
(from Tab. 5)

different opening widths. E.g. to test a half-opened manipulator (opening
width = max opening width/2), we scale the point cloud (after rotation and
tilt) by the factor 2. If the system detects a grasp with a high evaluation
score, grasping at that position with a half-opened manipulator will probably
succeed. In other words, to determine the best opening width we iteratively
determine the best grasp hypothesis for different opening widths using the
scaling factor S for the point cloud by the means of

S =
1

(opening width as fraction ∈ (0, 1])
(7)

and finally select the grasp hypothesis with the overall best score. In exper-
iments with a newly developed household robot in Section 7.6, we tested the
procedure with a Festo Fin Ray gripper and could show that this improve-
ment enabled grasping of objects in scenes where grasping was not possible
without optimizing the opening width.

7 Robotic Experiments and Evaluation

As stated in the final notes of the recent grasp review journal paper of
Bohg et al. ([25]) an important issue of grasping is the current lack of gen-
eral benchmarks and performance metrics suitable for comparing different
grasp approaches. Available object-grasp databases like the Columbia Grasp
database [31] or the VisGraB data set (http://www.robwork.dk/visgrab/)
are not commonly used for comparison. As Bohg et al. mention earlier
in the article, it has been recognized that classical metrics based on ana-
lytic formulations, such as the widely used ε-metric proposed by Ferrari and
Canny [32], do not cope well with challenges arising in unstructured envi-
ronments. The ε-metric is implemented in simulators such as GraspIt! [33]

17

Table 5: Top Twenty Features ranked by F-score value
F-score SHAF #Reg. wred wgreen wblue wblack

14.7 x 3

14.2 x 3

9.5 x 3

7.9 2 1 -3 - -

7.9 x 3

7.7 3 1 -1 -10 -

7.3 x 3

6.8 4 1 0.5 -6 -8.25

6.6 x 3

6.3 x 3

6.1 x 3

6.1 x 3

5.8 2 1 -7 - -

5.8 2 1 -10 - -

5.8 3 1 -1 -1 -

5.7 x 3

5.5 4 1 0.5 -5 -8.25

5.5 3 -2 6 -2 -

5.4 2 -1 9.33 - -

5.3 2 -1 10.5 -

and OpenRAVE [34]. Even the developer of OpenRAVE, Rosen Diankov,
claims [35] that in practice, grasps detected using this metric tend to be
relatively fragile. In work done by Balasubramanian et al. [36] a number of
grasps were systematically tested in the real world that were stable according
to classical grasp metrics. A similar study by Weisz and Allen [37] focused
on the ε-metric. Both studies found out that the ability of the metrics to
predict stable grasps in the real world is very limited compared to the actual
best grasps. This corresponds to the experience we have with force closure
grasp solutions in simulators (GraspIt!, OpenRAVE), hence we think that
for now, the by far best way to evaluate and compare grasp approaches is
to execute grasps on physical robots. On the other side, grasping is highly
dependent on the employed sensing and manipulation hardware, as well as
on the quality of calibration. Therefore an objective comparison of grasp
approaches is very hard to achieve and normally occurs only for approaches
related to the same research group (an exception is Section 7.5).

18

7.1 Goals of experiments

In the following sections we present a series of experiments, in which we eval-
uated our approach with different robots (see Tab. 6). In each experiment
we focus on specific aspects (for an overview see Tab. 7).

Table 6: Overview of experiments
Exp. Name Robot-Arm DOF Manipulator Sec.

1 Clear Table Schunk 7 OB Hand protheses 7.2

2 Empty Basket Schunk 7 OB Hand protheses 7.3

3 SingleObjects PR2 7 PR2 Gripper 7.4

4 Clear Table PR2 7 PR2 Gripper 7.5

5 GripperWidth IGUS 5 Fin Ray Gripper 7.6

6 SingleObjects Kuka LBR 7 Michelangelo Hand 7.7

7 ObjectRecog. Kuka LBR 7 Michelangelo Hand 7.8

Table 7: Overview of aspects focused on in the experiments (x). (.) indicates
relevance of aspect for experiment, but not as primary focus.

ASPECT\Exp. 1 2 3 4 5 6 7

HAF x

6D Exploration x .

Autonomous x x

Box obstacle x

Clutter x x x

SHAF x x . . .

Comparison SOTA . x x

Gripper Width x

Scal. Manipulator . . . x .

Deformable objects . . . x

Recognition gain x

In Section 7.2 we present an experiment, in which a table with objects
was completely autonomously cleared using HAF, without any user input
(aspect: “Autonomous”). For this experiment in clutter we verified the use
of our grasp space exploration method. In Section 7.3 an experiment is
presented in which a box of objects was autonomously unloaded; thereby,
we compared our approach with related work from [38]. Sections 7.4 and
7.5 present experiments performed on a PR2 in which we compared our
approach to two other grasp detection methods and give a detailed com-
parison between our method and a well known grasp approach (SOTA).
In Section 7.6 we present experiments conducted with the Hobbit platform
(a household robot currently developed in the framework of an FP7-EU

19

(a) Test Run 1 (b) Test Run 2 (c) Test Run 3 (d) Test Run 4

(e) Test Run 5 (f) Test Run 6 (g) Test Run 7

(h) Test Run 8 (i) Test Run 9 (j) Test Run 10

Figure 10: Test cases for clearing the table

project) in a clearing the floor scenario, in which we also tested the feasibil-
ity of the pre-grasp gripper opening width calculation. In Sections 7.7 and
7.8 we use our method on a more complex manipulator and show the gain
of combining our method with object recognition.

ROS (Robot Operating System, www.ros.org) was used for module com-
munication for all experiments. All point cloud manipulations were done
with PCL (Point Cloud Library, www.pointclouds.org).

7.2 Clear Table with Schunk 7-DOF Arm

In the first experiment we demonstrate the capability of our approach by
grasping objects from a table. Tests for eleven different scenarios (Fig. 10(a)-
10(j)) were done. The grasp classifier was trained with Height Accumulated
Features. The experiments and results are an extension of work previously
published in [39]. Fig. 11 shows all 19 objects used. Most of them are
graspable from any configuration. The two bowls become non-graspable for
our manipulator if grasp manipulations resulted in an upside down position.

20

7.2.1 Clear Table with Schunk Arm: Test Setup

For grasp execution we use a Schunk 7-DOF robot arm with an Otto Bock
hand prosthesis “SensorHand Speed” with one degree of freedom. Our ap-
proach is targeted at working with input data from one top view only. Since
more data from a second camera view is useful for path planning, a second
camera was used for this experiment. For perception of data we used two
Microsoft Kinect cameras with PrimeSense sensors, which we triggered with
a time offset to overcome overlapping laser pattern projections that lead to
worse data quality. [TODO: rephrase]

7.2.2 Clear Table with Schunk Arm: Results

Tab. 8 shows results from the eleven executed trials clearing the table. In all
cases the table was successfully cleared after placing the objects and starting
the system without any further intervention from the experimenter. A grasp
was rated as successful if an object was grasped, lifted and delivered to a
plastic box one meter away from the original position of the object pile.
Since object manipulation for a number of objects in cluttered scenes can
lead to situations where grasps are not possible any more (due to kinematic
reachability after moving an object out of the graspable area or due to
missing grasps because of an upside down bowl) it was a priori not granted
that the table will be cleared completely in each run. Videos of the test runs
are available at: www.youtube.com/user/clearingthetable

Figure 11: Objects used for Clearing the Table with a Schunk arm

Tab. 9 gives a detailed overview of grasp failures per trial and object. In
test run 7 the plastic bowl was grasped together with the headset. Since the
objective of this experiment is to clear the table top without segmentation
of objects, this grasp is assessed as successful grasping of both objects. For
the used implementation it takes 2-3 seconds to calculate the top grasp and
about one second for grasp and path planning in OpenRAVE. Overall we

21

Table 8: Clearing the Table results for all trials
Run Objects Removed Table Cleared Grasp Failures

1 5/5 yes 0

2 5/5 yes 0

3 6/6 yes 1

4 6/6 yes 0

5 7/7 yes 0

6 7/7 yes 0

7 8/8 yes 1

8 8/8 yes 0

9 9/9 yes 0

10 9/9 yes 0

11 7/7 yes 3

Sum 77/77 11/11 5

could achieve 77 successful grasps out of 82 tries (93, 9%) for grasping from
piles of unknown objects.

7.3 Empty a Basket with Schunk Arm

In this experiment we demonstrate the capability of our approach (with HAF
only) by grasping unknown objects from a basket. Tests for ten different
scenarios (see Fig. 12, [23]) were done. To the best knowledge of the authors
we are the first to present a vision-based autonomous system for grasping
from piles of unknown objects in a basket. [TODO: delete last sentence?]

7.3.1 Empty a Basket with Schunk Arm: Test Setup

For grasp execution again a Schunk 7-DOF robot arm with an Otto Bock
hand prosthesis “SensorHand Speed” was used. An accurate and robust
basket detection for position and orientation was crucial for these tests.
Developing this module with 100% reliability and coping basket occlusions
is challenging, but not focus of this work. Perception was again done using
two Microsoft Kinect cameras positioned at opposite sides of the basket.

7.3.2 Empty a Basket with Schunk Arm: Results

Tab. 10 gives a detailed overview of grasp failures per test run and grasped
object type for the ten trials emptying a basket. The basket as non-graspable
obstacle increases the complexity of the task significantly. Still, in all cases
the basket was successfully emptied after placing it at a random position in
the graspable area (limited only by the kinematics of the arm) and starting
the system without any further experimenter intervention. In five out of ten

22

Table 9: Grasp failures per object for 10 trials. Entry of last column is
number of failures divided by number of tries.

Obj\Run 1 2 3 4 5 6 7 8 9 10 11 Sum

Ape 0 - - - - - - - - - - 0/1

Ball - - - - - 0 0 0 0 - 0 0/5

Bowl - - - - 0 - 0 - - - 0 0/3

BowlBig - - 0 0 - 0 - 0 0 0 - 0/6

Car - - 0 - - - 0 0 - 0 - 0/4

CarSmall - - - - 0 - - - - - 0 0/2

Cereal - - - - 0 0 - 0 - 0 0 0/5

CuboidFoam 0 0 0 0 - - - - - - - 0/4

Elephant 0 0 - 0 - 0 0 - 0 0 - 0/7

Headset - - - - - 0 1 0 0 0 - 1/6

Lego - - - - 0 - - - 0 - - 0/2

Loco - - - 0 - - - - - - 2 2/4

Pig - - - - 0 0 0 0 0 0 0 0/7

Plasticine - - - 0 - - - - 0 - - 0/2

SelfCutFoam - - 0 - - - - 0 - 0 1 1/5

SoftPads 0 0 0 0 0 0 0 0 0 0 - 0/10

TeaBlue - 0 1 - - - - - 0 - - 1/4

TeaRed - 0 - - - - - - - - - 0/1

Whey 0 - - - 0 - 0 - - 0 - 0/4

Sum 0 0 1 0 0 0 1 0 0 0 3 5/82

test runs the basket was emptied without a single grasp failure. Regarding
only first tries to grasp an object our approach succeeded in 61 out of 70
cases, giving a success rate of 87.1%. The used implementation needed 2-
3 seconds for grasp calculation and about one second for grasp and path
planning with OpenRAVE.

Tab. 11 shows a grasp error analysis. Three main issues were identified
causing grasp failures: Incomplete point cloud data, path planning errors in
the simulation, and suboptimal grasp points. For a deeper failure analysis we
refer to [23], but want to note that out of 22 failed grasps, 18 happened when
only one or two objects where left in the basket. Two particularly challenging
object constellations, which caused seven and four grasp failures in a row
were responsible for that. However, this fact also demonstrates that our
weighting system for grasp selection is capable of identifying easily graspable
objects first. It also shows that the basket brings a complication which
should not be underestimated, since most of these 18 grasp failures were
related to objects adjacent to the basket border. It also reveals potentials for
enhancements of the grasp learning system. To avoid obstacles (i.e. basket
boarders or currently not grasped objects), the system chooses grasp points

23

(a) Test Run 1 (b) Test Run 2 (c) Test Run 7

(d) Test Run 8 (e) Test Run 9 (f) Test Run 10

Figure 12: Examples of test scenarios for empty the basket

Figure 13: Objects used for Empty Basket experiments

near the edges of an object, which can result in objects slipping out of the
manipulator’s fingers. Fig. 14 shows the scenario were grasping failed seven
times in a row due to a combination of grasps selected near object edges
(also because of missing alternatives) and insufficient point cloud data.

7.4 Grasping Single Objects with a PR2

In this section we evaluate grasp success rates for single standing objects
for three different grasp algorithms, including our method (HAF & SHAF).
The objective of this experiment (and the following experiment in 7.5) was
the comparison and detailed performance analysis of the two main methods
tested, namely our topography-based method and a state-of-the-art algo-
rithm. Supported by examples we carve out advantages of our method over
a representative of recent image-based approaches (see Section 7.5.2).

24

Table 10: Grasp failures per object for 10 trial runs. Last column shows
number of failures divided by number of tries.

Obj\ Run 1 2 3 4 5 6 7 8 9 10 Sum

Ball - - 0 0 0 0 - - 5 0 5/11

Bowl 0 - - - - - - - 0 - 0/2

Car - - - - - - - - 0 1 1/3

Cereal 0 - 0 0 0 - - - - - 0/4

Cube - 0 - - - - - - - - 0/1

CubeFoam - 0 - - - - - 0 - - 0/2

Cuboid 0 0 0 0 0 0 2 0 1 - 3/12

CuboidFoam - - - - - - 0 - - - 0/1

CylinderFoam - - - - - - 0 0 - 0 0/3

EdgeFoam - - - - - - 0 0 - - 0/2

Elephant 0 2 0 0 0 0 0 0 1 0 3/13

Milk - 7 - 2 - - - - - - 9/11

Pig - - - - - 0 - - 0 0 0/3

Plasticine 0 0 0 0 0 0 - - - 1 1/8

SoftPads 0 - 0 0 0 0 0 0 - - 0/7

DrinkBox 0 - - - 0 - - - - - 0/2

Whey - 0 0 - - 0 0 0 0 0 0/7

Sum 0 9 0 2 0 0 2 0 7 2 22/92

7.4.1 Grasping Single Objects with a PR2: Test Setup

Symmetry Height Accumulated Features as well as basic HAF were used to
train the grasp classifier for the experiments in this section. We implemented
the demo scenario on a PR2 robot platform at Cornell University. For grasp
execution we used the left 7-DOF arm, with a 2 finger manipulator. We
did not adapt the grasp classifier (training and initial tests for our grasp
classifier were done for an Otto Bock 1-DOF hand prosthesis) for the PR2
gripper, thereby showing that our method works without changes for differ-
ent manipulators. Even for numerous manipulators with bigger deviation
little code changes (such as scaling of the relevant point cloud as prepro-
cessing step) enable usage of our classifier without retraining from scratch.
Point cloud perception of scenes was done using one Microsoft Kinect cam-
era mounted at the head of the PR2. After perception of a point cloud,
points of the table surface were deleted automatically as well as points not
relevant for grasping, e.g. outside kinematic reachability of the used left
PR2 arm. From the remaining point cloud a mesh was generated which was
then used in OpenRAVE for path planning and grasp simulation. The Rect-
angle Representation method from [12] and our topography-based grasping
use the same function for grasp simulation in OpenRAVE from were the

25

Figure 14: Unstable grasp points due to insufficient data 1) misleading hole
in data mesh due to black tape on milk 2) grasp points and approach di-
rection 3) grasp execution in simulation; objects slipped out of manipulator
repeatedly when executed on real robot

Table 11: Analysis for grasp failures per object and test run. Failures are
caused by insufficient point cloud data (Data), wrong path planning (PP)
or unstable grasp points (HAF)

Run Object Failures Data PP HAF

2 Milk 7 x

9 Ball 4 x

2 Elephant 2 x

4 Milk 2 x x

7 Cuboid 2 x x

9 Ball 1 x

9 Cuboid 1 x

9 Elephant 1 x

10 Car 1 x

10 Plasticine 1 x x

Sum 22 15 2 10

physical robot is also controlled, so the system is not aware of from which
method the grasp hypothesis is coming from.

Three methods for calculating grasps (a 3D point, an approach vector,
and a roll angle for the manipulator) were compared in a test series about
grasping single objects on a table. The first method is the default grasp
planner from the robotics simulation environment OpenRAVE. A detailed
description of the used method can be found in the OpenRAVE documen-
tation about the grasping module ([40]). We clearly want to state that the
grasp calculation with this default OpenRAVE method is not completely
appropriate, since force closure calculation assumes a complete 3D object
model. Despite this shortcoming, we preferred this method to a more ran-
dom generation of grasp points and approach vectors as a basic benchmark
algorithm. Due to path planning, inverse kinematic and performance rea-
sons we also had to restrict the OpenRAVE grasp selection method to grasps
with a mainly vertical approach direction (70% vertical).

26

(a) Baseball (b) Bear (c) Bone (d) Bowl (e) Foam

(f) Glass (g) Glove (h) Mouse (i) Tape (j) Umbrella

Figure 15: Test objects used for Clearing the Table with a PR2

The second grasp method was the Rectangle Representation from [12].
Although this method focuses on learned features from 2D images, it uses
one feature based on the comparison of object heights in predefined rectangle
regions. This related feature, the popularity and published results of this
approach combined with the ability to work in cluttered scenes made this
work our choice to compare our work with.

The third method was ours using HAF and SHAF topographic features.
Nine out of ten objects for this experiment were chosen from an object

box at Cornell University, of which no object was ever used before for train-
ing of our classifier or any other part of our approach. To pick the tenth
object we asked a not involved person to pick any object from the lab that
fits between the PR2 gripper, which resulted in picking a computer mouse.
All objects are depicted in Fig. 15 in one of the grasp poses used for this
test. For test method 2 and 3 we used top grasps (with vertical approach
direction) only, due to 3 reasons: First, for a given manipulator orientation
and a straight approach trajectory at the last centimeters to an object, it is
already hard to find an area of 35x40cm for top grasps where inverse kine-
matic solutions are possible for all manipulator roll angles. Each allowed
deviation from vertical grasps reduce the size of this object placing region
where grasps can be executed. Second, for test method two no code was
available to calculate grasp hypothesis other than from the direction of the
camera view. And third, in this test scenario in contrast to experiments in
Sections 7.2 and 7.3 point cloud perception is done by a single camera. Due
to incomplete point cloud data (especially occlusions), path planning gets
more unreliable the more the approach direction deviates from the camera
view direction.

27

For testing, each object was placed five times in different poses (i.e. vary-
ing orientation and position) in a 35x40 cm region where inverse kinematic
solutions for vertical grasps were generally found. Lacking of uninvolved
human resources on the first day of test runs, we did this work ourselves
for the first five test objects, for the last five objects we asked non involved
persons to do so. After placing an object in the marked area, photos were
taken from different angles to replicate the scene for all three test methods.
A grasp is defined as successful if the robot arm lifts the object and holds
it for at least 15 seconds.

7.4.2 Comments on available Rectangle Representation code

We express our gratitude to Prof. Ashutosh Saxena and his group at Cornell
University for sharing their grasping code with the community and giving
us the opportunity to work with their resources to enable an objective com-
parison of grasp methods.

The provided code (available from [41]) needs as input an image of the
grasping area without objects to grasp and limits the grasp detection to im-
age regions where objects were placed afterwards by comparing the current
and the former image. The need to know how the empty grasp area looks
like without objects from a fixed camera view (“background subtraction”)
makes the approach inflexible with respect to camera or robot movements,
and hence unsuitable for mobile robotics. We enhanced the code by using
the path planning of OpenRAVE to find an appropriate distance between
the object and the manipulator while grasping instead of using a fixed offset
from the detected 3D point in the center of the rectangle from the Rectan-
gle Representation. Using the original approach would often had led to a
collision between the manipulator and grasped object because the learned
opening width was too narrow (see. Fig. 17) or there was simply no space for
the manipulator fingers since no implemented object collision was available
to recalculate the fixed offset. To perceive better results for Rectangle Rep-
resentation we therefore grasped with maximal opening width (which was
still not wide enough to grasp a baseball where the rectangle was centered
usually at the edge of the image and the manipulator touched the ball when
approaching: see Fig. 19(c)).

7.4.3 Grasping single standing objects with PR2: Results

Results are summarized in Tab. 12. The listed average time in seconds for
OpenRAVE algorithm is the time for grasp calculation. For algorithms 2
and 3 the time is measured from receiving the point cloud data (and image
data for method 2) to the output of the grasp hypothesis. Grasp and path
planing time for the latter two methods is about one second. Being aware
that our algorithm will still be superior regarding time performance, we

28

choose a very high quality threshold parameter for our algorithm. This
quality threshold stops our algorithm as soon as a grasp evaluation is better
than the threshold (so other grasps are not evaluated anymore). Although
with smaller threshold values good results are achieved, we decided to go
for more grasp quality than faster performance.

Table 12: Grasp Success Rate (Suc.) in % and performance time in seconds:
OpenRave vs. Rectangle Representation vs. (S)HAF

Method OpenRAVE Rec. Repr. (S)HAF

Item Suc. Time Suc. Time Suc. Time

Baseball 0 15.0 20 33.5 100 9.8

Bear 0 12.4 40 47.1 100 9.8

Bone 0 17.9 100 42.2 100 11.8

Bowl 40 94.9 80 45.5 100 12.7

Foam 40 35.7 80 44.2 100 14.4

Glass 20 18.1 80 47.3 40 12.4

Glove 100 33.6 100 44.5 100 15.0

Mouse 0 13.5 20 45.0 80 10.4

Tape 0 10.3 20 45.7 100 10.4

Umbrella 0 39.3 40 42.6 100 14.0

AVERAGE 20 29.1 58 43.8 92 12.1

Our method succeeded in 46 out of 50 trials, giving a success rate of 92%
compared to 58% for Rectangle Representation and 20% for the OpenRAVE
force closure grasp selection. Overall, 8 out of 10 objects were grasped 5
times without a single failure. The Rectangle Representation only achieved
a higher success rate for the Martini glass. For this object the (S)HAF grasps
were not optimal, and during the approaching of the manipulator a slight
touch of the object caused the lying Martini glass to role away. Reasons why
the Rectangle Representation performed considerably worse are depicted in
Fig. 17 - Fig. 21. Often grasps were detected at object edges, which was a
main reason for the 34% gap in grasp success rate. Further grasp quality
analysis of the main methods is done in Section 7.5.2.

Although we invested significant time finding optimal parameters for
the OpenRAVE method, the algorithm did not grasp more than 1 out of
5 objects successfully. In total, for 12 out of 50 grasp tries, this method
could not find a force closure grasp. For additional 5 tries, path planning
failed for all found grasp solutions (although we restricted the grasps to
mainly vertical directions). Force closure detection in simulation for two
finger grippers does not always return promising solutions even if complete
object models are available. Furthermore, the calculation times dramatically
increase with the size of the objects mesh (which is way bigger for the
clearing the table scenario) for this method. Because of this, we decided to

29

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

(d) Test Case 4 (e) Test Case 5 (f) Test Case 6

Figure 16: Test cases with 5, 6, 7, 8, 9 and 10 objects for clearing the table

skip the OpenRAVE algorithm for the next test scenario.

7.5 Clearing Table with PR2

In this test series we aim to clear a table with 5 to 10 objects in a pile. The
basic setup is equal as stated in Section 7.4.1. After each failed grasp the
object with the center nearest to the tool center point of the gripper at the
time of closing was removed such that each method has only one try per
object. Each of the two methods led to one grasp where two objects were
removed simultaneously. In these two cases, the object with object center
further away from the tool center point of the manipulator was replaced
to its original position and the grasp for the other object was assessed as
successful. After each grasp the initial position of the remaining objects was
reestablished using photographs from different angles of the initial scene. To
enable object readjustment we inserted a control instance after each grasp
try, that waits for a key to be pressed. Apart from that, the system clears
the table without user interaction.

7.5.1 Clearing Table with PR2: Results

Tab. 13 shows success rates for all six test cases and the average calculation
time per grasp in seconds. Pictures of all test cases are shown in Fig. 16.

Using our approach the system successfully grasped 39 objects out of
45 tries, giving an overall success rate of 86.7%. Rectangle Representation
achieved 26 out of 45 successful tries, giving an overall success rate of 57.8%.

30

Table 13: Grasp Success Rate (Suc.) in % and performance time in seconds:
Rectangle Representation vs. (S)HAF

Method: Rec. Repr. (S)HAF

Test Case #Obj Suc. Time Suc. Time

TC 1 5 4/5 48 5/5 17

TC 2 6 3/6 51 6/6 15

TC 3 7 4/7 45 6/7 16

TC 4 8 6/8 48 7/8 15

TC 5 9 4/9 48 7/9 16

TC 6 10 5/10 47 8/10 15

Sum/Avg. 45 26/45 47.8 39/45 15.7

Although, as mentioned above, our parameter setting was suboptimal with
respect to time performance, our algorithm was three times faster than the
Rectangle Representation algorithm. The 6 grasp failures for our approach
had different reasons. In test case 5, we failed to grasp the glove because only
for this single case the “integrated path planning” failed and parts of the
bowl prevented the manipulator from approaching the glove as far as needed
in the simulation environment and hence in the real grasp execution. For the
other 5 failures non-optimal HAF grasps were each time partly responsible.
But in each case other factors contributed to the failure: 3 times the object
(toy bear in TC 3, pink bone in TC 4, Martini glass in TC 5) was touched
and moved by the manipulator out of the initial position. One reason for
premature touching of objects is incomplete data. For the Martini glass
and the bowl the inside region was generally badly perceived as shown in
an example of the bowl in Fig. 22. Hence path planning calculated paths
where the manipulator collided with the (in simulation not existing) inside
of the bowl or Martini glass when grasping at the rim.

Videos of all test cases of the clearing the table scenario with PR2 can
be found at www.youtube.com/user/clearingthetable/. In addition one
video shows clearing the table with 10 objects in a harder constellation
then all test cases which was not part of the test trials without a single
grasp failure. The used demo code for the experiments (whole framework,
not only core algorithms) for grasping unknown objects with a PR2 (Rect-
angle Representation and (S)HAF) is available as ROS stack. This con-
tribution enables a valid comparison of other grasp detection algorithms
with the two methods presented in this section. The code is available at:
http : //pr.cs.cornell.edu/grasping/rect data/data.php

7.5.2 Failure Comparison

[TODO: better title] In Fig. 17 to Fig. 21 we give examples why our ap-
proach performed considerably better than Rectangle Representation re-

31

(a) Top ten grasps
with gripper closing
direction indicated vi-
olet

(b) Top ten grasps (c) Top result (d) Top result

Figure 17: Calculated gripper width for Rectangle Representation: Ex-
amples of the grasps learning approach Rectangle Representation which is
mainly based on 2D images. If the manipulator would approach an ob-
ject with an opening width corresponding to the Rectangle Representation,
the gripper would not be able to surround the object - but would touch it,
respectively would be stopped by the path planning routine before it has
reached a position where closing the gripper would succeed as grasp.

(a) Top result (b) Top result (c) Top result (d) Top result

Figure 18: Shadow: Rectangle Representation is sensitive to shadows. It
happens that grasps are detected at shadow boarders.

garding grasp success rate. We show results of the Rectangle Representation
mostly taken from above test cases, where the rectangle represents position
and opening width of the gripper. The pictures show the top grasp or the
top ten grasps of a scene. A thick violet line indicates the manipulator
closing direction.

• Opening width
From Fig. 17 and following images it is obvious that the use of an
initially open gripper and skipping the opening parameter led to better
results for Rectangle Representation. For these tests our approach did
not calculate gripper opening width neither.

• Shadow sensitive
Fig. 18 shows that shadows can have an impact on the Rectangle
Representation. The HAF approach is completely robust to shadows

32

(a) Top Ten
Grasps with
closing direction

(b) Top Ten
Grasps

(c) Top Ten
Grasps

(d) Top result

(e) Top result

Figure 19: Edge Focused: Rectangle Representation in practice mainly relies
on edges in 2D images. Color changes indicate potential grasp positions
because they correlate with object boundaries. That this does not always
correlate with good grasping points can be seen in this examples.

because they have no (topographical) impact on objects.

• Edge focused
Images from Fig. 19 illustrate that grasp learning of Rectangle Rep-
resentation seems to focus in practice on the existence of edges in the
image. For slim objects like screwdrivers and pens or objects with thin
boarders like bowls this approach might be adequate, but for bigger
objects the center of the grasp is suboptimal placed at the boarder
of the object. The approach is also sensitive to color changes on one
object (see Fig. 19(d)). HAF is not relying on color.

• Surface independent
Fig. 20 shows examples of detected grasp hypotheses that illustrates
that it is hard for the features in Rectangle Representation to take the
object surface into account. There is no possibility to grasp an object
when the gripper touches the object before any part of the object is
in the area such that the manipulator can surround the object when
closing. Our approach takes object surfaces and obstacles into account.

• Height dependent
Fig. 21(a) shows an example of the top grasp of Rectangle Represen-
tation for an umbrella at its cord. It makes clear that the impact of
height related features is not very strong which we consider as draw-
back since executing robot grasps at strings on planes is very hard.

33

(a) Top result (b) Top result (c) Top result (d) Top result

(e) Top ten
grasps with
closing direction

Figure 20: Surface independent: Rectangle Representation detects grasps
at positions the manipulator can not reach because it would touch parts of
the object before closing the manipulator can succeed. In 20(e) detected for
the baseball and the white toy bear.

Our approach learned to prefer grasps at positions with high height
differences (for top grasps) between objects and surroundings.

• Orientation
Fig. 21(b) shows an example where Rectangle Representation delivered
a grasp orientation 90 degrees off to the optimal orientation because
of the color crossing of a screwdriver handle. Roughly spoken, our
approach tries to enclose objects by the manipulator as far as possible
which leads in the case of slim rectangular objects to an appropriate
roll angle.

• Perception
In some cases the white toy bear depicted in Fig. 21(c) could not be
detected on the white background although the Rectangle Representa-
tion algorithms compare the current image with the image of an empty
table and the bear had some black spots for nose and eyes. Our ap-
proach heavily relies on perceived point cloud data. With new devices
developed in recent years high quality data for a favorable price can be
achieved. But there are still limits for 3D perception which suggests
the combination of 3D and 2D data to overcome perception problems
of shiny or transparent objects (see Section 7.8).

• Obstacle avoidance and path planing In Fig. 21(d) the center of
the rectangle is not on the glass. But for path planning the glass is an

34

(a) Height
dependence

(b) Orientation (c) Perception (d) Path plan-
ning

(e) Grasp not on
object

Figure 21: Examples of Rectangle Representation Learning (with top evalu-
ated grasp), images from left to right showing weak impact of height features,
a bad result for grasp orientation, a scene in that perception of a white toy
bear was only possible after adding more texture, a scene which illustrates
again a drawback if grasp detection relies too much on 2D images, a grasp
center detected at a position not belonging to any object

Figure 22: Incomplete perceived point cloud data (depicted is the result of
a plastic bowl from a camera mounted at the robots head) is one reason for
failed grasps

insuperable obstacle for grasping the pen with defined approach direc-
tion and rotation. Our approach with “integrated path planning” is
avoiding grasps blocked by obstacles and tends to pick highest objects
first.

• Object-related grasp points
(TODO: rewrite) In [10] the authors emphasize in the abstract that
only for the found grasp point a triangulation is done, and that stan-
dard dense stereo often fails to return good 3D models. If the grasp
point in an image is detected at a position where triangulation is not
possible, this method will deliver a wrong grasp point in 3D and it is
not an advantage, that triangulation has not to be performed for each
point. Independent if the 3D position of a grasp point from an image
is determined by triangulation from stereo data ([12]) or by image-
point cloud registration like it was done in [24] for the grasp Rectangle
Representation, if the grasp point (center of rectangle) is not on the
object like in Fig. 21(e) or all examples of Fig. 18, the position de-
termination will give a wrong result, which is especially a problem if
for grasp and path planning a grasp point offset is used instead of an

35

object model or mesh. For our method we cannot remember any (top)
grasp detection at a position where no object part was available. Fur-
thermore our implementation that uses available object meshes helped
the grasp Rectangle Representation to cope with sporadic situations
where for bigger objects grasp points were detected near a high point
in 2D, but actually at the table surface, since the simulation stopped
the manipulator movement along the approach vector before object
collision.

7.6 Clearing the Floor with Hobbit

For the task of tidying up a floor in an apartment we implemented the
(S)HAF method on the newly developed household robot Hobbit. Hobbit
is developed at the Vienna University of Technology in cooperation with
other universities, research institutes and industrial partners and aims to
enable older people to extend the time living at their own homes. The first
prototype has a mobile platform and a 5-DOF IGUS arm with a 1-DOF
Festo Fin Ray gripper. User interaction is done by touch screen, speech or
gesture recognition. Hobbit is currently able to entertain the user, learn and
bring objects or detect emergency scenarios and call for help.

7.6.1 Experiments with Hobbit

For experiments we put objects on a floor and let Hobbit pick up the objects
and place them in its tray. Floor detection is based on detection of horizontal
planes in the expected floor height. Points of the floor are filtered out and our
grasp detection was tested including variable opening widths of the gripper
before it closes.

Hobbit was able to detect, approach, and grasp objects on the floor
like spectacle cases, remote controls, and small boxes. The resulting grasp
grid for an easy scenario with two aspirin boxes on the floor is depicted in
Fig. 23(b). This result is for a fixed orientation and fixed gripper opening
width. Green and red points indicate potentially good respectively bad
grasping positions. The red line shows the gripper closing direction at the
position of the top vertical grasp (above the bigger aspirin box).

For gripper opening width experiments we tested opening widths of 1,
0.5 and 0.33 times the maximal width. Point cloud scaling (to simulate
a partly opened gripper) was done only for the manipulator closing axis
since the gripper has only two opposite positioned fingers. In test scenarios
specially arranged for testing gripper width, we could verify the functioning
of our approach. Fig. 23(a) shows a scenario where the calculation of a
proper gripper opening width is crucial, since a fully-opened gripper could
not approach the object in the required way for grasping.

36

(a) Hobbit is grasping a tape
in a scenario where a fully
opened gripper would not suc-
ceed.

(b) Grasp grid results for one
orientation and one gripper
width for two aspirin boxes

Figure 23: Experiments with the mutual care robot Hobbit

7.7 Grasping Unknown Objects with Kuka Arm

In this section we show experiments for a forth hardware setup. We emphasis
on two aspects:

• Hardware scalability regarding more complex manipulators

• Error analysis and potential improvements for grasp detection

7.7.1 Grasping Unknown Objects with Kuka Arm: Test Setup

The following experiments were executed with a 7-DOF Kuka LWR arm
and the Michelangelo hand from Otto Bock with 2-DOF. We use one Kinect
device for data acquisition. Camera to robot calibration is performed con-
tinuously during the experiments using the ROS package ar pose [42].

To show that our grasp detection is also usable with more complex ma-
nipulators, we perform a test series with ten objects (depicted in Fig. 24) and
ten tries per object. For each try the object was placed in front of the robot
arm with different orientations. Due to safety reasons we put the objects
on a foam and started the execution of each trajectory by pressing enter
as only interaction after starting the grasp process. For practical reasons
(e.g. more robust against calibration errors or missing point cloud data)
we always try to approach the last 7cm in a straight line without change of
the manipulators orientation. This limits the probability to find (inverse)
kinematic solutions for specific grasps and is the main reason why we re-
stricted the grasp approach direction in this experiments to mainly vertical
approach rays (apart from small variations to find possible kinematic solu-
tions). This way we can execute the top rated grasps instead of using first

37

(a) Ball (b) Bowl (c) Cap (d) Case (e) Mammoth

(f) Pads (g) Paper (h) Shorts (i) Tape (j) Toy block

Figure 24: Test objects for grasping with Kuka arm and Michelangelo hand
during experiments

possible grasps. The manipulator roll steps were chosen to be 15 degrees
and grasps calculation was done for all rotations, so it was not stopped if a
good grasp has already exceed a threshold value which could enhance time
performance significantly depending on the selection of the threshold.

A grasp is classified as successful if the robot arm delivers the grasped
object to a defined position next to the table where the test object was
placed.

7.7.2 Grasping Unknown Objects with Kuka Arm: Results

We achieved a grasp success rate of 85%. For detailed success rates per
object see Tab. 14, a more detailed failure analysis is done in Section 7.7.4.

38

Table 14: Grasp Success Rate in % and performance time in seconds with
Michelangelo hand

Item Success in % Time in sec.

Ball 100 8.8

Bowl 90 10.1

Cap 100 11.0

Case 50 8.1

Mammoth 90 11.2

Pads 100 9.9

Paper 80 8.4

Shorts 90 14.0

Tape 90 8.0

Toy block 60 5.8

AVERAGE 85 9.5

7.7.3 Michelangelo Hand

One reason for test trials on a forth hardware platform was to show that
our approach can be used with no or only minor changes for more com-
plex manipulators. As mentioned earlier we do not calculate specific grasp
points on objects (or actually the incomplete perceived object surface data
of objects), we calculate an approach vector for an object that is aligned
for grasping with the manipulator specific approach vector. This alignment
with subsequent grasp planing in simulation enables our method to work
with different manipulators. Crucial for the grasp performance is the defini-
tion of the manipulators approach vector (position and direction). For the
Michelangelo hand it was a bit tricky to find a suitable approach vector due
to the complex finger trajectories, see Fig. 25. A simplified trajectory of the
forefinger and the thumb in two dimensions are depicted in Fig. 25.

Figure 25: Michelangelo hand in closed and opened position. Right:
Michelangelo hand in perfect position for grasping a small and a long rect-
angular shaped object (both green). The red arrows indicate a simplified
finger trajectory when the hand is closed.

39

The green rectangles represent two objects. For both objects the hand is
optimal positioned such that closing the fingers should result in valid grasps.
If the objects would swap there position, grasps would fail for both of them.
This exhibits a problem: our approach (ideally) defines the center of these
objects as the center of a grasp (which is equal to the mid point of two
grasp points). Defining one approach vector for the manipulator can only
bring the hand in the perfect grasp position for one of the objects, not both.
During tests for defining a good approach vector for the Michelangelo hand
we already developed a heuristic that takes the local surface into account and
adapts the hand position with respect to the width of the object mesh in the
space between the opened fingers. For these tests we considered only a fixed
hand orientation. When we started (pre)tests with all roll angles, we realized
that in practice this heuristic is not even needed since our evaluation system
would prefer grasps such that objects are grasped at there smaler side - so
for the longer rectangle the hand would be rotated by 90 degrees. So finally
we decided to skip the heuristic and again use a single approach vector, also
to prove that our method can be used without adaptations. Even with the
use of the heuristic the training of the SVM classifier is independent. We did
not change or retrain the SVM grasp classifier compared to the experiments
in the previous two sections.

7.7.4 Error Analysis and Potential Improvements

Nine out of 15 failed grasps happened when grasping the spectacle case or a
small wooden toy block. The spectacle case slipped out of the manipulator
in 5 out of 10 trials also for reasonable grasps. The rigid convex shape of
the object in combination with relatively strong gripper force and a week
friction due to the object surface material made the spectacle case slip out
of the hand in each of the failure cases.

(a) Paper
grasp at
side

(b) Pads grasp at side (c) Tape grasp at
side (1)

(d) Tape
grasp at
side (2)

(e) Tape grasp at
side (3)

Figure 26: Weak grasps at side of paper, soft pads and video tape.

For the soft pads, the video tape and the newspaper (with a rubber
band) the grasps were sometimes not centered but at the side of the object
(see Fig. 26). The resulting torque led in some cases to instable grasps and
grasp failures during the delivery of the object (e.g. Fig. 26(c)-26(e) were the
tape slided out of the hand short before the delivery position). Therefore we

40

Figure 27: Grasp position detected at the side of an object (video tape)
due to inaccurate point cloud data and over sensitive grasp classifer w.r.t.
height differences

investigated the problem of these suboptimal grasps and could detect two
sources of error.

In Fig. 27 the mesh of the video tape is shown. The camera could only
perceive the upper surface of the object. This surface is actually flat in
real world, but the mesh generated from the perceived point cloud is quite
bumpy. In the depicted case the grasp was chosen above one of the peeks in
the surface. This problem is related with the second source of error which
becomes also apparent if objects like the soft pads lay aslope: the grasp
classifier does not always accept grasp positions if there are higher (if we
think of top grasps) surface points next to the position to classify. Therefore
we get grasps at the side of objects. Adding training examples focusing on
these surface constellation should improve the performance of the classifier
and will be part of future work.

7.8 Grasping Known Objects with Kuka Arm

State of the art object recognition (e.g. for one colored, deformable objects
like the shorts in Fig. 24(h) and related object segmentation as prerequisite
for grasping are quite limiting (e.g. in very cluttered environments) from our
experience. On the other hand object specific grasp force adaptation or task
based grasping and manipulation are needed for future robots that should
at one time be able to support people in their daily lives. In Section 7.5.2
we mentioned the limits of point cloud perception of current sensors for
transparent objects. Fig. 28 shows a transparent plastic bottle with a la-
bel and its perceived point cloud data (respectively the generated mesh).
The insufficient object data leads to grasps where the manipulator would
collide with the object endangering the intactness of the hardware. Using

41

(a) Bottle (b) Perceived data of bottle (c) Complete object model
due to recognition

Figure 28: The left picture shows a bottle seen from the camera, the center
picture shows the incomplete mesh/point cloud data received from a Kinect
laser sensor and the resulting hand orientation for grasping that would lead
to a collision between manipulator and object that can not be determined by
the system. The right picture shows the resulting object mesh if the objects
is recognized (SIFT) and an object model is used as input for grasping.

object recognition from Aldoma et al. [43] mainly based on 2D data we can
achieve a complete pre-learned mesh of the object. To show the benefit of
combining (S)HAF with object recognition for specific cases, we performed
a test, grasping the bottle 10 times for both methods: (1) our method from
the previous sections and (2) our method using a object model received by
object recognition.

7.8.1 Grasping Known Objects with Kuka Arm: Results

The results are listed in Tab. 15: with our conventional approach we could
only grasp the bottle in three out of 10 tries. Using object recognition
and complete models of the bottle each grasp succeeded. For the latter we
considered only tries where the object recognition delivered a model. This
was not the case for every try due to reflections (see Fig. 29) and abrasion

Figure 29: Object recognition failed in some cases due to light reflections and
abrasion. After trial 8 we had to exchange the bottle for better recognition
performance.

of the bottles surface during grasping. Even this small experiment could
show advantages of combining our method with object recognition. Object
recognition is not only improving our approach, but our approach applied
to known models can improve performance for grasping known objects.

42

Table 15: (S)HAF vs. (S)HAF&Object Recognition: Grasp Success Rate
and performance time in seconds. (*) restart of laptop

Try HAF Suc. Time (sec) HAF&Recog. Time (sec)

1 0 35 1 12

2 1 33 1 12

3 1 30 1 12

4 1 27 1 11

5 0 7* 1 10

6 0 10 1 11

7 0 9 1 13

8 0 7 1 13

9 0 6 1 11

10 0 6 1 11

SUM/AVG 3/10 17* 10/10 11.6

8 Conclusion

We presented an approach for enabling robots to grasp unknown objects.
Our algorithm does not rely on segmentation and works robustly even in
cluttered scenes. Core contribution is a new feature type particularly suit-
able for the task of grasping. We demonstrated the advantages of our
approach compared to other approaches, especially image-based ones and
conducted experiments with a state-of-the-art representative. The focus of
the research presented here was to develop an approach, which is robust to
various and changing situations in the real world and subsequently useful
for mobile robotics, and not on a theoretical simulation-based approach.
Therefore we used “integrated path planning” to guarantee that selected
grasps do not fail due to collisions with other objects and a heuristic to en-
sure robustness of the grasps with respect to positioning errors. We showed
the abstraction power and information gain of HAF by comparing it to a
classifier trained on point clouds discretized to height grids. The improve-
ment of the approach with Symmetry Features showed easy extensibility. A
thorough analysis for improved features showed that more complex features
without an obvious intuitive interpretation lead to better grasp classification
results than basic features. We introduced our methods to explore a seven
dimensional grasp space (position, orientation, manipulator gripper width)
given our grasp classifier. We implemented tests on four different robot plat-
forms for different tasks like tidying floor, emptying box, clearing table and
grasp single objects without manipulator specific classifier training, thereby
indicating the hardware scalability of our approach (which is also relying
on the use of a robot model for final grasp calculation in simulation). Fi-
nally, we showed how to combine our approach with object recognition to

43

overcome the problem of incomplete data and use the advantages of our
approach if complete object models are available. Videos of the experiments
and also the code from the experiments presented in Sections 7.4 and 7.5
are available on line.

Acknowledgment

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. 288146, Hobbit.

References

[1] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka,
“Rigid 3d geometry matching for grasping of known objects in clut-
tered scenes,” The International Journal of Robotics Research, vol. 31,
no. 4, pp. 538–553, 2012.

[2] A. Morales, T. Asfour, P. Azad, S. Knoop, and
R. Dillmann, “Integrated Grasp Planning and Visual
Object Localization For a Humanoid Robot with Five-
Fingered Hands,” pp. 5663–5668, 2006. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4059335

[3] K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour,
D. Kragic, and R. Dillmann, “Grasping known objects with humanoid
robots: A box-based approach,” pp. 1–6, 2009. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5174776

[4] W. Wohlkinger and M. Vincze, “3D Object Classification for Mobile
Robots in Home-Environments Using Web-Data,” International Work-
shop on Robotics in AlpeAdriaDanube Region RAAD, pp. 247–252,
2010.

[5] M. T. Mason and J. K. Salisbury Jr., Robot Hands and the Mechanics
of Manipulation. The MIT Press, 1985.

[6] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by multifingered
robot hands,” IEEE Journal on Robotics and Automation, vol. 4, no. 1,
pp. 32–44, 1988.

[7] N. S. Pollard, “Closure and Quality Equivalence for Efficient Synthe-
sis of Grasps from Examples,” The International Journal of Robotics
Research, vol. 23, no. 6, pp. 595–613, 2004.

44

[8] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” ICRA, vol. 2, pp. 1824–1829,
2003.

[9] K. M. Varadarajan and M. Vincze, “Object Part Segmentation and
Classification in Range Images for Grasping,” in International Confer-
ence On Advanced Robotics ICAR 2011, 2011, pp. 21–27.

[10] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic Grasping of Novel
Objects using Vision,” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 157–173, 2008.

[11] A. Saxena, L. L. S. Wong, and A. Y. Ng, “Learning Grasp Strategies
with Partial Shape Information,” AAAI, vol. 3, no. 2, pp. 1491–1494,
2008.

[12] Y. Jiang, S. Moseson, and A. Saxena, “Efficient Grasping from RGBD
Images : Learning using a new Rectangle Representation,” ICRA, pp.
3304–3311, 2011.

[13] Q. V. Le, D. Kamm, A. F. Kara, and A. Y.
Ng, “Learning to grasp objects with multiple con-
tact points,” pp. 5062–5069, 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509508

[14] K. Huebner and D. Kragic, “Selection of robot pre-grasps using box-
based shape approximation,” pp. 1765–1770, 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4650722

[15] M. Przybylski, T. Asfour, and R. Dillmann, “Planning grasps for
robotic hands using a novel object representation based on the medial
axis transform,” pp. 1781–1788, 2011.

[16] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelos-
sof, “Grasp Planning via Decomposition Trees,” Proceedings
2007 IEEE International Conference on Robotics and Au-
tomation, no. April, pp. 4679–4684, 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4209818

[17] J. Bohg, M. Johnson-roberson, B. Le, J. Felip, X. Gratal, N. Bergstr,
D. Kragic, and A. Morales, “Mind the Gap - Robotic Grasping under
Incomplete Observation,” ICRA, pp. 686–693, 2011.

[18] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng,
“Grasping Novel Objects with Depth Segmentation,” Image Rochester
NY, pp. 2578–2585, 2010.

45

[19] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y. Ng, and
O. Khatib, “Grasping with Application to an Autonomous Checkout
Robot,” ICRA, pp. 2837–2844, 2011.

[20] Y. L. Y. Li and N. S. Pollard, “A shape
matching algorithm for synthesizing humanlike envelop-
ing grasps,” pp. 442–449, 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1573607

[21] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, and
S. Schaal, “Template-based learning of grasp selection,” 2012 IEEE
International Conference on Robotics and Automation, pp. 2379–2384,
May 2012.

[22] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stent,
“Perceiving, Learning, and Exploiting Object Affordances for Au-
tonomous Pile Manipulation,” in Robotics: Science and Systems Con-
ference, 2013.

[23] D. Fischinger and M. Vincze, “Empty the Basket - A Shape Based
Learning Approach for Grasping Piles of Unknown Objects,” IROS,
2012.

[24] D. Fischinger, Y. Jiang, and M. Vincze, “Learning Grasps for Un-
known Objects in Cluttered Scenes,” in In International Conference
on Robotics and Automation (ICRA), 2013.

[25] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis - a survey,” IEEE Transactions on Robotics, 2014.

[26] Y.-w. Chen and C.-j. Lin, “Combining SVMs with Various Feature
Selection Strategies,” Strategies, vol. 324, no. 1, pp. 1–10, 2006.

[27] F. C. Crow, “Summed-area tables for texture mapping,” in Proceedings
of SIGGRAPH, 1984, pp. 18(3):207–212.

[28] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” Inter-
national Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[29] C.-c. Chang and C.-j. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 27:1—-27:27, 2011.

[30] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,”
Proceedings 2000 ICRA Millennium Conference IEEE International
Conference on Robotics and Automation Symposia Proceedings, vol. 10,
no. 4, pp. 348–353, 2000.

46

[31] C. Goldfeder, M. Ciocarlie, H. D. H. Dang, and P. K. Allen, “The
Columbia grasp database,” pp. 1710–1716, 2009. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5152709

[32] C. Ferrari and J. Canny, “Planning optimal grasps,” Pro-
ceedings 1992 IEEE International Conference on Robotics
and Automation, pp. 2290–2295, 1992. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=219918

[33] B. Y. A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for
robotic grasping,” IEEE Robotics Automation Magazine, vol. 11, no. 4,
pp. 110–122, 2004.

[34] R. Diankov and J. Kuffner, “OpenRAVE : A Planning Architecture
for Autonomous Robotics,” Tech. Rep. CMU-RI-TR-08-34, Robotics
Institute, no. July, 2008.

[35] R. Diankov, “Automated Construction of Robotic
Manipulation Programs,” Ph.D. dissertation, Carnegie
Mellon University, 2010. [Online]. Available:
http://www.programmingvision.com/rosen diankov thesis.pdf

[36] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and
Y. Matsuoka, “Physical Human Interactive Guidance: Identifying
Grasping Principles From Human-Planned Grasps,” IEEE Trans-
actions on Robotics, vol. to appear, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6175147

[37] J. Weisz and P. K. Allen, “Pose error robust grasping from contact
wrench space metrics,” 2012 IEEE International Conference on
Robotics and Automation, pp. 557–562, May 2012. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224697

[38] M. Varadarajan, Karthik Mahesh and Potapova, Ekaterina and Vincze,
“Attention driven grasping for clearing a heap of objects,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, 2012, pp. 2035—-2042.

[39] D. Fischinger and M. Vincze, “Shape Based Learning for Grasping
Novel Objects in Cluttered Scenes,” in 10th IFAC Symposium on Robot
Control, P. Ivan, Ed., Sep. 2012, pp. 787–792. [Online]. Available:
http://www.ifac-papersonline.net/Detailed/55919.html

[40] R. Diankov, “OpenRAVE Documentation,” 2012. [Online]. Available:
http://openrave.org/docs/latest stable/openravepy/databases.grasping/

47

[41] “Rectangle Representation Code and HAF Framework
available as ROS Packages,” 2012. [Online]. Available:
http://pr.cs.cornell.edu/grasping/rect data/data.php/

[42] “ar pose.” [Online]. Available: http://wiki.ros.org/ar pose

[43] A. Aldoma, F. Tombari, L. D. Stefano, and M. Vincze, “A Global
Hypotheses Verification Method for 3D Object Recognition,” in ECCV
2012, 2012, pp. 511–524.

48

“Pick up that object”: Enabling Robust Object
Grasping for Social Service Robots

David Fischinger, Astrid Weiss, and Markus Vincze

Vienna University of Technology, Vienna, Austria,
{df, aw, vm}@acin.tuwien.ac.at

Abstract. Household service robots are intended to support their users
in a variety of tasks, where fetch-and-carry scenarios are a key element.
One of the reasons why these universally usable robot-butlers have not
reached marketability yet is the limited capability of service robots to
physically interact in “real” environments, in specific object manipula-
tion and grasping. In this paper we present an approach to enable robust
grasping for service robots. We extend previous work to enable grasping
of known and unknown objects. The method is based on the topogra-
phy of a given scene and abstracts grasp-relevant structures to enable
machine learning techniques for grasping tasks. We describe how to use
the approach to adapt the robotic hand opening width before grasp-
ing to enable grasping in situations were a fully opened gripper could
not approach the object. A proof-of-concept study with a service robot
prototype demonstrates the feasibility of our approach.

Keywords: service robotics, domestic context, grasping

1 Introduction

Imagine in a near future service robots that act as companions and help people at
home in their daily life. This idea could be found in many news papers, but also
in scientific publications over the last ten years. A companion robot is defined as
a robot that “(i) makes itself ’useful’, i.e. is able to carry out a variety of tasks
in order to assist humans, e.g. in a domestic home environment, and (ii) behaves
socially, i.e. possesses social skills in order to able to interact with people in a
socially acceptable manner” [5]. Currently, Human-Robot Interaction research
predominantly focuses on the second aspect of this definition. However, in case
that the first aspect “make itself useful” is not fulfilled, sociability aspects will
not be sufficient to meat the users’ expectation of a service robot. We still have
to face a technological gap to enable robots to act in our world. A required task
of a service robot is to fetch and carry a defined object from a known location
and to deliver it to the user. The complexity of this task can vary, e.g. the robot
has to identify the right object from a set of objects or might get instructions
in which room the object is located, but the common goal of all fetch-and-carry
missions is to bring an object from a location to the user. More recently this
task also includes autonomous grasping of the object and object recognition.

2

In this paper an approach for grasping known and unknown objects is pre-
sented based on the topography of the scene. We focus primarily on robust per-
formance in real world environments. Having demonstrated the suitability of our
approach for grasping unknown objects in cluttered scenes, we extend previous
work by the calculation of adequate pre-grasp opening width. In domestic set-
tings objects hardly ever stand completely isolated in ideal grasping positions,
therefore it can be a relevant prerequisite to first adjust the gripper opening
width before approaching and grasping the object. Therefore, our approach en-
ables service robots to better interact with their environment and enhances their
manipulation skills, which brings us one step closer to the imagined companion
robot that performs useful tasks in order to assist humans.

In the following we describe three common problem types related to object
manipulation in the domestic interaction context and examine related state-of-
the-art research for these categories. In Section 3 we shortly explain the general
topography-based approach. In Section 4 we explain the process to calculate
appropriate pre-grasp gripper opening widths. Section 5 presents a proof-of-
concept study with the newly developed service and companion robot, Hobbit.
The paper closes with an reflection and outlook on required manipulation skills
for future domestic service robots.

2 Problem Space and Contribution

In a typical fetch-and-carry mission autonomous grasping is needed in a variety
of types, depending on the interaction scenario. For example fetch-and-carry
missions could start with one of the following user commands:

1. “Robot, pick up the object I am pointing at.”
Problem type A: grasping unknown object

2. “Robot, bring me my favorite cup.”
Problem type B: grasping known object

3. “Robot, clear the table.”
Problem type C: grasping objects in clutter

All of these scenarios pose different research problems and challenges for
autonomous grasping, which are up to now not fully solved.

In the following, a short description for each of these three grasp problem
types is given, mentioning important results of related work and summarizing
achievements and open problems of state-of-the-art approaches.

2.1 Problem Type A: Grasping unknown objects

The problem of grasping unknown objects (“Robot, pick up the object I am
pointing at.”, see Fig. 1(a)) is still an open research problem that needs further
exploration for robust application in the domestic context.

In [14], local patch-based image and depth features are learned and used for
grasping unknown objects. The method was tested for nine unknown objects and

3

(a) Problem type A (b) Problem type B (c) Problem type C

Fig. 1. Example for grasping problem types (from left to right): “Robot, pick up the
object I am pointing at.” Grasping unknown object; “Robot, bring me my favorite
cup.” Grasping known object; “Robot, clear the table.” Grasping objects in clutter.

achieved a success rate of 87.8%. In [10] this work was improved by adding the
capability of learning the optimal gripper opening width. In an evaluation for
grasping twelve different unknown objects a success rate of 87.9% was achieved.

In [8] we presented our approach for grasping unknown objects, based on
Topographic Features. We achieved a success rate of 92% for grasping single
objects and outperformed [10] in a direct comparison by 34%.

2.2 Problem Type B: Grasping known objects

Grasping known objects relies on available object information, such as a CAD
model database and pre-learned grasps. The problem of grasping is divided into
the subproblems of segmenting an object, recognizing the object, estimation of
the six-dimensional object pose, and finally the grasping process.

In [13] a vision-based object recognition and localization system for impedance
controlled grasping is used to grasp known objects. In an evaluation for grasping
single standing objects, 58 out of 60 trials were successfully executed. A grasp
trial was considered successful if the object was correctly recognized, grasped,
and carried to a predefined place. Three objects were tested in the trials with
ten repetitions for two different object poses, to test all pre-saved grasp poses.

In [4] four different objects (can, juice bottle, rice box, notebook) with simple
geometric forms are recognized and the full six-dimensional pose is estimated
from a single view point. The can was only recognized if it was placed not further
than 60cm away from the camera. It seems the notebook was placed standing
upright for recognition and grasping, which is not the most stable or common
orientation for such an object. A grasping success rate of 91% was achieved. In

4

their follow-up work [3], a grasp success rate of 98% could be achieved for five
different objects with multi-view input.

We conclude that the task of grasping known objects (“Robot, bring me my
favorite cup.”, see Fig. 1(b)) can be seen as solved, given a number of restrictions,
such as given object models, pre-learned manipulator-dependent grasps for each
object, a limited number of rigid objects, and reliable object recognition.

2.3 Problem Type C: Grasping objects in clutter

The problem of grasping unknown objects in clutter (“Robot, clear the table.”,
see Fig. 1(c)) is a challenging problem. The perceptible data diminishes due
to occlusions. The solved problem of path planning with obstacle avoidance
for robot manipulators gets harder in practice; similarly the segmentation and
identification of the desired object to grasp becomes more difficult.

In [12] the method from [14] was extended to accommodate grasps with multi-
ple contacts and a success rate of 80% was achieved for desk clearing experiments
with two to eight objects.

In [11], edge and texture-based features on 2D images are used in an early
cognitive system to build a 3D object representation. Their system achieved
grasp success rates of about 60% for scenes with up to three objects.

2.4 Contribution: Gripper opening with determination

Previous work was only considering a six-dimensional grasp space (defined by the
position and the orientation of the manipulator) where an initially fully opened
manipulator was assumed. In Fig. 2(a) a real-world situation is depicted where
grasping with an initially fully opened manipulator would not succeed because
the manipulator cannot reach the grasp position due to collisions with obstacles.
In this paper we present an extension to our approach to learn grasps in a seven-
dimensional grasp space, showing how to determine a suitable opening width for
target approaching of the manipulator by iterative use of the Topographic Feature
approach.

3 The Topographic Feature Grasp Approach

In this paper we investigate the problem of grasping objects, defined by
detecting a gripper pose in the seven-dimensional grasp space (position, ori-
entation, gripper opening width) where a mechanical gripper has to close for
a suitable grasp and the approach trajectory in order to reach the final grasp
position (see Fig. 3).

The Topographic Feature approach [9, 8] is based on the observation that for
grasping from top, parts of the end-effector have to enclose an object and hence
go further down than the top height of the object. Unlike other approaches, this
approach does not try to guess the shape of partially visible objects. The newly

5

Fig. 2. Motivation of pre-grasp gripper opening width: The picture shows a scenario
where an initially fully opened gripper could not succeed, because gripper-object colli-
sions would occur while approaching the final grasp position. The pictures are showing
the first prototype of the service robot Hobbit.

developed Height Accumulated Features (HAF) abstract topographical informa-
tion from perceived surfaces of objects and hence enable to learn how to grasp
them. The idea of Height Accumulated Features (also stated in [9, 8]) is to de-
fine small regions and compare average heights of these regions using discretized
point cloud data. The height differences give an abstraction of the shape of the
objects that enables the training of a classifier (using supervised learning) to
determine if grasping would succeed for a given scene. For explanatory reasons
consider the special case of top grasps (vertical approach direction of robotic
hand) of an object on a table. The term height can then be used intuitively and
measures the perpendicular distance from the table plane to the points on the
top surface of the object. A force or form closure grasp can only be achieved if
parts of the hand will go further down towards the table than the top surface of
the object. Hence the region of the object top will on an average be higher than
the area where the robotic fingers are positioned. To speed up calculation, we
discretize the point cloud, i.e. we generate a height grid H where each 1x1cm
cell saves the highest z-value of points with corresponding x- and y-values (see
Fig. 4). One Height Accumulated Feature is now defined as two, three or four
regions Ri on the height grid together with a weighting factor wi for each region.
A feature value is defined as the weighted sum of all regions. So the jth HAF
value fj is calculated as

fj =

nrRegionsj∑
i=1

wi,j · ri,j (1)

6

Fig. 3. Problem description: The picture shows the problem this paper investigates:
An object should be grasped. Therefore the position Px,y,z of the robotic hand in world
coordinates, its orientation Oα,β,γ at the final grasp pose, and the gripper opening
width during approaching the object have to be determined. In this pose the closing
of the gripper leads to a successful grasp. In addition, the approach trajectory has
to be determined to avoid collisions with the object to grasp or obstacles including
supporting planes. Object data can be given in the form of complete object models or
by partial 2.5D object views.

with
ri,j =

∑
k,l∈N:(k,l)∈Ri,j

H(k, l) (2)

where nrRegionsj is the number of regions for feature fj . Ri,j indicates the
ith region for the jth feature and is defined by the set of all pairs of height grid
cell indices belonging to the region.

The use of machine learning techniques enables the generalization of learned
grasping patterns to novel objects. For a detailed description of the approach,
including an additional topographic feature type, a grasp evaluation system,
methods to explore the grasp space and extensive experiments including unload-
ing a box of unknown items with a Schunk 7-degrees of freedom robotic arm and
clearing a table with a PR2, we refer to [9, 8].

4 Pre-Grasp Gripper Width Calculation

The initial idea of Topographic Features was to learn and detect areas where
parts of a robotic hand can enclose the center of the object parts. The classifier
and the weighting system identify suitable grasping positions for a gripper with
known opening width. To test if a partly opened robotic hand can enclose an
object we use the same approach with adaptations: by scaling the input point
cloud with respect to the degree of gripper closing, different opening widths
can be simulated. For example, to test a half-opened gripper (opening width =

7

Fig. 4. Shows the gray height grid resulting from point cloud discretization and an
example feature with two regions. Region R1 is the green inner region, region R2 is
composed of the red and the green area. For each grid cell of the regions the height is
summed up per region. Each region sum is weighted with an individual factor and the
sum (difference) of all regions (here two) gives the feature value.

max opening width/2), the point cloud (after rotation and tilt) is scaled by the
factor 2. If the system detects a grasp with a high evaluation score, grasping at
that position with a half-opened griper will probably succeed. In other words,
to determine the best opening width, the best grasp hypothesis for different
opening widths is iteratively determined using the scaling factor S for the point
cloud PCO by the means of

S =
1

(opening width as fraction ∈ (0, 1])
(3)

and finally the grasp hypothesis with the overall best score is selected. For a de-
scription of the evaluation and scoring system, see [8]. In a first proof-of-concept
study with the first prototype of the household robot, Hobbit, described in Sec-
tion 5, the procedure was tested with a Festo Fin Ray gripper and it can be shown
that this improvement enables grasping of objects in scenes where grasping was
not possible without optimizing the pre-grasp gripper opening width.

5 Proof-of-Concept Study with Hobbit

The goal of this preliminary study was to test our approach with a service robot
along with an analysis of possible gripper opening parameters in the context
of the applicability of Topographic Features to the 7-dimensional grasp space.
The scenario for this study was the task of tidying up a floor in an apartment.
The robot prototype we used (see Fig. 5) was based on a mobile platform and
a 5-DOF IGUS arm with a 1-DOF Festo Fin Ray gripper (more details on the
robot can be found in [7]).

8

Fig. 5. Hobbit Prototype I clearing the floor by picking up an Aspirin box

5.1 Study Setup & Results

In this first proof-of-concept study Hobbit had to pick up objects, which were
dumped on the floor, and place them in its tray. Floor detection is based on the
detection of horizontal planes at the expected floor height. 3D points of the floor
are filtered out and Topographic Feature grasp detection was tested along with
variable opening widths of the gripper before it closes.

Hobbit was able to detect, approach, and grasp objects on the floor such as
spectacle cases, remote control units, and small boxes. The resulting grasp grid
for the case of an easy scenario with two aspirin boxes on the floor is depicted
in Fig. 6(a). This result is for a fixed orientation and fixed gripper opening
width. Green and red points indicate potentially good, respectively bad grasping
positions. The red line shows the gripper closing direction at the position of the
top vertical grasp (above the bigger aspirin box).

In order to test the opening width parameter, opening widths of 1, 0.5 and
0.33 times the maximal width were used. Point cloud scaling (to simulate a partly
opened gripper) was done only for the gripper closing axis since the gripper
has only two anti-podal fingers. In test scenarios especially arranged for testing
gripper width, the functioning of the presented approach was verified.

Fig. 6(b) shows such a scenario where the calculation of a proper gripper
opening width is crucial, since a fully-opened gripper could not approach the
object in the required way for grasping. For testing purposes we reduced the
orientation of the gripper to top grasps with only one roll angle to test. The area
of potential grasps was limited to a smaller object we placed in between two
bigger objects. Given this restriction we could clearly verify that the calculation
of adequate gripper opening widths improves the grasping capabilities of a service

9

robot. For scenarios of freestanding objects, the calculation of pre-grasp opening
widths had no negative impact on the grasping results.

(a) Grasp grid results for one ori-
entation and one gripper width
for two aspirin boxes

(b) Example scenarios like this
were used to test the gripper open-
ing width calculation.

Fig. 6. Experiments with the Hobbit robot

5.2 Conclusion & Outlook

In this paper we presented an approach to handle the unresolved problem for op-
timal gripper (approach and) placement for robotic grasping, especially focusing
on the pre-determined gripper opening width. Clearly the extended approach to
tackle the seven-dimensional grasp space and the results presented in this paper
are only a small stepping stone on the way to enable service robots for the do-
mestic context that can perform “useful” tasks as requested by [5]. More research
will be needed to regard this important research problem as solved. Nevertheless,
there are a number of related aspects and potential extensions that we will focus
on in future work.

Using visual and/or tactile feedback during and after grasping can improve
failure handling and hence make the approach even more robust. Furthermore,
a check if a grasp was successful after closing the robotic hand can improve
the time needed for successful grasping tasks like clearing the floor with mobile
robots. Moreover, for real-time grasp calculation visual servoing with relative
movement control for the gripper seems to be an interesting approach for future
service robots such as the Hobbit robot.

10

References

1. Ravi Balasubramanian, Ling Xu, Peter D. Brook, Joshua R. Smith, and Yoky
Matsuoka. Physical Human Interactive Guidance: Identifying Grasping Principles
From Human-Planned Grasps. IEEE Transactions on Robotics, 28(4):899–910,
2012.

2. Yi-wei Chen and Chih-jen Lin. Combining SVMs with Various Feature Selection
Strategies, volume 324 of Studies in Fuzziness and Soft Computing. Springer, 2006.

3. A. Collet and S.S. Srinivasa. Efficient multi-view object recognition and full pose
estimation. Robotics and Automation (ICRA), 2010 IEEE International Confer-
ence on, 2010.

4. Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and Dave Ferguson. Ob-
ject recognition and full pose registration from a single image for robotic manipu-
lation. In 2009 IEEE International Conference on Robotics and Automation, 2009.

5. Kerstin Dautenhahn, Sarah Woods, Christina Kaouri, Michael L Walters,
Kheng Lee Koay, and Iain Werry. What is a robot companion-friend, assistant
or butler? In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on, pages 1192–1197. IEEE, 2005.

6. Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, 2010.

7. David Fischinger, Peter Einramhof, Walter Wohlkinger, K. Papoutsakis, Peter
Mayer, Paul Panek, Tobias Koertner, Stefan Hofmann, Antonis Argyros, Markus
Vincze, Astrid Weiss, and Christoph Gisinger. Hobbit - The Mutual Care Robot.
In Assistance and Service Robotics in a Human Environment Workshop in conjunc-
tion with IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013.

8. David Fischinger, Yun Jiang, and Markus Vincze. Learning Grasps for Unknown
Objects in Cluttered Scenes. In IEEE International Conference on Robotics and
Automation (ICRA), pages 609 – 616, 2013.

9. David Fischinger and Markus Vincze. Empty the basket - a shape based learn-
ing approach for grasping piles of unknown objects. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2051–2057, 2012.

10. Yun Jiang, Stephen Moseson, and Ashutosh Saxena. Efficient Grasping from
RGBD Images : Learning using a new Rectangle Representation. In ICRA, pages
3304–3311. IEEE, 2011.

11. G. Kootstra, M. Popovic, J. A. Jorgensen, K. Kuklinski, K. Miatliuk, D. Kragic,
and N. Kruger. Enabling grasping of unknown objects through a synergistic use
of edge and surface information. The International Journal of Robotics Research,
31(10):1190–1213, 2012.

12. Q V Le, D Kamm, A F Kara, and A Y Ng. Learning to grasp objects with multiple
contact points. In IEEE International Conference on Robotics and Automation
(ICRA), pages 5062–5069. IEEE, 2010.

13. Chavdar Papazov, Sami Haddadin, Sven Parusel, Kai Krieger, and Darius
Burschka. Rigid 3d geometry matching for grasping of known objects in cluttered
scenes. The International Journal of Robotics Research, 31(4):538–553, 2012.

14. Ashutosh Saxena, Lawson L S Wong, and Andrew Y Ng. Learning Grasp Strategies
with Partial Shape Information. In AAAI, volume 3, pages 1491–1494. AAAI Press,
2008.

15. Jonathan Weisz and Peter K. Allen. Pose error robust grasping from contact
wrench space metrics. In 2012 IEEE International Conference on Robotics and
Automation, pages 557–562. IEEE, May 2012.

	D6 3_Physical_Support_Fetch_and_Carry_0
	IJRR2013_HAF
	ICSR2014

