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1 Executive Summary 
A rich set of HOBBIT visual competences were realized and integrated to the PT1 platform 
and were successfully evaluated during laboratory and pilot tests by PrM12.  

At a first stage, existing computer vision methods had been employed in combination with 
research techniques and methods that we researched, composing a first version of our 
vision-based framework to cover the full set of tasks within the WP5 and assess the resulting 
system as a proof-of-concept framework. Those methodologies regarded robust and efficient 
3D human detection and tracking (WP5: T5.1, T5.2) as well as posture/gesture recognition 
(WP5: T5.3, T5.4). Based on these, additional functionalities had been designed and 
developed, providing vision-based functionalities such as user’s fall detection and calculation 
of the 3D direction of the arm during a pointing gesture performed by the user. Moreover, 
novel computer vision methods had also been introduced regarding 3D head pose estimation 
and object detection (WP5: T5.3), in order to enrich the set of vision-based functionalities of 
the PT1.  

The most significant evaluation of our concept framework was performed during the user 
trials conducted started on PrM12 until PrM18 taking place in trial sites in three different 
countries. A direct outcome of these evaluation efforts was a new list of user needs and 
requirements that formed the basis for redesigning some of the existing visual competences 
and the definition of new ones to become available in the PT2 platform.  

To this end, we set out to conduct research towards novel methodologies that will adapt 
to the assessed functional, technical and user requirements of the project towards 
achieving PT2, by replacing the existing 3rd party methods that had partially been used 
for PT1 with our own methods that advance the state of the art in their respective 
domains. The new, advanced functionality and perceptual competences will become part of 
the PT2 and will be evaluated during the new user trials and field tests starting from PrM32 
(WP1, Task 1.7). 

Our research focused on the main computer vision problems described in WP5, namely  

a) 3D full human body detection, modelling and tracking (Tasks 5.1, 5.2),  
b) activity/gesture recognition methodologies (Tasks 5.3,  5.4) and  
c) tracking and posture recognition (Task 5,4).  

The topics are too broad, so individual publications have been scheduled for individual 
topics. More specifically, two scientific publications are already available for these tasks and 
are provided as attachments to this deliverable in Appendix A and B, respectively. Another 
novel methodology for hand posture and gesture recognition has been fully developed and is 
currently under extended experimental evaluation. This is performed by engaging real users 
(elderly people from the Greek pool of users of Hobbit). A brief description and illustration of 
recent results are reported. A detailed description of the method and the relevant publication 
will be attached to the next D5.3 deliverable by PrM30 in conjunction with the final integrated 
vision-based system of Hobbit. 

A brief description for each of the three novel methodologies follows. The two publications 
are attached to the Appendix A and B, respectively. 
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2 Tracking the articulated motion of the human body  
A novel model-based, top-down approach for 3D modelling and tracking of 3D position, 
orientation and full articulation of the human body from markerless visual observations 
obtained by two synchronized RGBD cameras. 
Inspired by recent advances to the problem of model-based hand tracking, conducted also 
by FORTH using volumetric 3D representations of body parts as models, we treat human 
body tracking as an optimization problem that is solved using stochastic optimization 
techniques. We show that the proposed approach outperforms in accuracy state of the art 
methods that rely on a single RGBD camera. Thus, for applications that require increased 
accuracy and can afford the extra complexity introduced by the second sensor, the proposed 
approach constitutes a viable solution to the problem of markerless human motion tracking. 
Our findings are supported by an extensive quantitative evaluation of the method that has 
been performed on a publicly available data set that is annotated with ground truth. 
 

3 Online simultaneous segmentation and classification of 
gestures with novelty detection 

A novel methodology has been researched in order provide a discriminative framework for 
online simultaneous segmentation and classification of visual gestures, which is also able to 
detect novelty in the input data. To this end we employ Hough transform to vote in a three - 
dimensional space for the begin point, the end point and the label of the segmented part of 
the input stream. An SVM in combination with an objective function are used to model each 
class without neglecting novelty detection and to suggest putative labeled segments on the 
timeline. To identify the most plausible segments among the putative ones we apply an 
evolutionary algorithm, which combines (a) an objective function, which considers the begin 
point the end point and the label (b) a constraint that there is no overlap between the begin 
and the end points of the identified segments. The performance of our method is evaluated 
on synthetic data; it is found to be of comparable or higher accuracy to the state of the art for 
online segmentation and classification, while, unlike those methods, it is able to handle 
novelty. 
 

4 Robust and efficient recognition of hand postures and 
gestures for human robot interaction 

A novel framework is proposed that encompasses efficient techniques for robust detection 
and tracking of human hands and fingers and efficient recognition of hand postures and 
gestures in real-time. The proposed methodology capitalizes on visual information acquired 
by an RGBD camera. Based on the findings of the PT1 user trials and studies, existing upper 
body gestures/postures had to be replaced with more intuitive hand/finger-based gestures 
that can be performed more easily by elderly users. The proposed framework enables this 
capability for PT2 as we were able to redesign the gesture recognition interface to support a 
two-level interaction scheme regarding mid-range human robot interaction based on upper 
body postures/gestures and short-range human-robot interaction based on newly introduced 
hand/finger-based gestures. The two levels of interactions support hand or arm 
gestures/postures that trigger different robot commands. Table 1 describes the assignment 
of the physical movements to robot commands while Figure 1 illustrates the physical 
movements required by the new gestural interface of PT2. 
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The novel methodology for detection and tracking of hands and fingers relies on depth data 
and geometrical structural primitives and minimum spanning tree features of the observed 
depth based structure of the scene to classify between hand and non-hand structures in the 
foreground. Upon detection of the hand and the set of the palm and the fingers, the temporal 
evolution of their 3D positions are analyzed towards recognition of the predefined postures 
and gestures. Some visualization of the internal processed and results of the methodology 
are shown in Figure 2 and Figure 3. 
Part of our experimental evaluation involves elderly users that were recorded to perform the 
predefined gestural vocabulary to assess the performance rate of our methodology and 
further improve it prior to its integration with PT2. Some representative snapshots of the 
results are shown in Figure 4. More details on the methodology and experimental evaluation 
will follow in D5.3 due to PrM30. 
The reported methodologies have already been implemented and ongoing work regards 
technical issues towards integrating them with the Hobbit PT2 software framework that 
aspires to support the PT2 of Hobbit. The overall, integrated vision-based system of Hobbit 
PT2 will be reported, as planned, in deliverable D5.3.  
  

Table 1: Set of predefined hand gestures and upper body postures implemented for 
PT2 gestural interface of HOBBIT. 

User 
Command 

Gesture/Posture Robot commands Usage in  
PT2 Scenarios 
(listed in D1.6) 

 
Yes 

Thumb up 
-palm closed  
(close-up- range interaction) 

Provides a positive 
response to 
confirmation 
dialogues. YES 
gesture. 

All 

 
No 

Index finger up and waving-palm closed 
(close-up- range interaction) 

Provides a negative 
response to 
confirmation 
dialogues. 
NO gesture. 

All 

 
Cancel a 
task 

Both open palms towards the robot 
(close-up-range or normal- range interaction) 

Terminates an on-
going robot 
behaviour/command. 
 

All 

 
Pointing 

Extended arm pointing a direction in 3D 
space 
 

Pointing to an object 
or place in 3D  
space using an 
extended arm for 2-3 
seconds 

 
IV. Pick up an 

(unknown) 
object 

 
Reward the 
robot 

Circle gesture 
-open palm circular movement towards the 
robot (at least one complete circle is needed) 
(close-up- range or normal- range interaction) 

Rewards the robot 
for an accomplished 
action/task. 

 
All 

Emergency Cross hands pose (normal- range interaction) Signifies an 
emergency situation. 

II-Emergency 
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Figure 1: The set of hand gestures that will be integrated in PT2. (a) YES and (b) NO gestures utilized 
for confirmation dialogues. (c) cancel command that can be used for close-up- and near range 
interaction. (d) the pointing gesture indicates an object on the floor to be picked up. (e) a reward 
gesture can be performed to thank the robot for an accomplished task (one or more circles). (f) the 
gesture that a user can use and trigger the emergency task (triggered while releasing the arms-
moving them downward). 

 

 
Figure 2: An illustration of intermediate results of the novel methodology for hand/finger detection and 
tracking. The centre of the detected palms are marked in colored circles, colored lines indicate the 
skeleton of the detected depth-based structure of the hands and rectangles show the detected fingers. 
In (a) and (d), the final results are provided. In (b) and (c), some of the first steps for the detection of 
the hands in the foreground of the scene are shown. The skeletal structure of the foreground area is 
detected based on depth data and segmented appropriately in (c) to three hand candidates. Detection 
of the fingers will finally determine the actual hands in the scene filtering out outliers. 
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Figure 3: 3 Intermediate results of the novel hand/finger detection and tracking method and gesture 
recognition method introduced for the new gestural interface of PT2. First row: detection of the wrist, 
palm, fingers and fingertips of the two hands. Rows 2-4: Recognition of three hand-based gestures 
(Stop/cancel, Yes, No) and their corresponding internal skeletal-structures and features detected and 
tracked based on depth data. In the right column, purple lines indicates skeletal structures of the 
detected arm and hand, purple circle indicates the detected and tracked palm position. 
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Figure 4: Snapshots of real tests with elderly users of Hobbit target group from Greece are illustrated 
in the images. Hands/fingers detection and tracking was performed, while gesture and posture 
recognition of the predefined gestural vocabulary that will be integrated on PT2 was active. The 
resulting events upon successful recognition of the gestures and postures are superimposed on the 
images providing the location of the event and its keyword in coloured circle and text, respectively. 
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Appendix A 
[1] Damien Michel, Costas Panagiotakis, Antonis Argyros, “Tracking the articulated motion of 
the human body with two RGBD cameras”, submitted to Machine Vision Applications journal, 
under review. 
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with two RGBD cameras
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Abstract

We present a model-based, top-down solution to the problem of tracking

the 3D position, orientation and full articulation of the human body from

markerless visual observations obtained by two synchronized RGBD cameras.

Inspired by recent advances to the problem of model-based hand tracking [15],

we treat human body tracking as an optimization problem that is solved using

stochastic optimization techniques. We show that the proposed approach

outperforms in accuracy state of the art methods that rely on a single RGBD

camera. Thus, for applications that require increased accuracy and can afford

the extra complexity introduced by the second sensor, the proposed approach

constitutes a viable solution to the problem of markerless human motion

tracking. Our findings are supported by an extensive quantitative evaluation

of the method that has been performed on a publicly available data set that

is annotated with ground truth.

Keywords: markerless human motion capture, 3D human tracking, 3D

pose estimation, articulated object tracking, 3D reconstruction
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1. Introduction1

The estimation of the articulated motion of the human body is very im-2

portant to a number of real world applications, ranging from surveillance3

to game design and human computer interaction. It is considered to be a4

difficult problem because of its high dimensionality and the variability of the5

tracked person regarding appearance, body dimensions, etc. A number of6

practical approaches simplify or even avoid these problems by using special7

hardware or by interfering with the subject and/or the environment by means8

of visual markers or full body suits [25]. However, unobtrusive, markerless9

tracking is definitely preferable since it does not interfere with the environ-10

ment, the subject and its actions. The methods that use markerless visual11

data as their only input fall into two basic categories, the top-down and12

the bottom-up ones. Top-down approaches can provide accurate, physically13

plausible solutions at the cost of a high computational complexity. Bottom-14

up methods are typically faster, but rely on a discrete set of training poses15

whose selection determines the accuracy of the obtained results.16

In this paper, we propose a model-based, top-down solution to the prob-17

lem of tracking the 3D pose and articulation of a human body. This is for-18

mulated as a optimization problem that minimizes the discrepancy between19

the 3D occupancy of hypothesized instances of a human body model and20

the volume reconstructed from the observations. The input to the method21

comes from two wide baseline, extrinsically calibrated, off-the-shelf RGBD22

sensors [27] whose depth maps are fused to give rise to the required volumetric23

representation of the human body. The required volumetric representation24

can also be obtained by computing the visual hull of a human body figure25

through standard techniques [24] employing a network of multiple, conven-26

tional cameras. Nevertheless, the setup of two RGBD cameras is preferable27

due to its lower cost and complexity.28

Optimization is performed based on an a stochastic method (Particle29
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Swarm Optimization - PSO) [9]. We demonstrate experimentally the accu-30

racy achieved by the baseline PSO (bPSO) optimization method that bor-31

rows directly from recent advances on the problem of tracking the articulated32

motion of the human hand [15]. We also propose a new variant called per-33

turbed PSO (pPSO) which systematically perturbs the solutions provided34

by bPSO. We demonstrate that pPSO outperforms bPSO. We also compare35

both bPSO and pPSO with a widely employed method [17] for estimating the36

human skeleton based on a single RGBD camera. Experimental results show37

that compared to [17], the proposed pPSO method provides more accurate38

results. Thus, in applications where increased accuracy is worth the extra39

complexity introduced by the second sensor, pPSO is the preferred choice.40

The rest of the paper is organized as follows. Section 2 reviews existing41

approaches to the problem of markerless human motion capture and track-42

ing. Section 3 describes the proposed approach, by detailing the human43

body model employed, the observation model, the objective function used to44

compare hypotheses and observations as well as the optimization methods45

used to minimize it. Section 4 presents the experimental evaluation of the46

proposed method in a standard dataset that in annotated with ground truth.47

Finally, Sec. 5 summarizes the paper by drawing the main conclusions from48

this research.49

2. Related work50

Because of its high theoretical and practical interest, human motion cap-51

ture based on vision has been the theme of numerous research efforts. The52

complete review of these works is beyond the scope of this paper. The in-53

terested reader is referred to [11, 19] where extended surveys are provided.54

More recently, Chen et al. [2] surveyed methods for human motion estimation55

based on depth cameras.56

Most commercial solutions to the problem of human motion capture make57
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use of special markers that are placed on carefully selected (e.g., joints) points58

of the subject’s body. In this paper we are interested in markerless motion59

capture techniques because, being unobtrusive, present obvious practical ad-60

vantages over the marker-based solutions.61

Markerless human motion capture techniques may be classified into two62

broad classes, the bottom-up and the top-down ones. Bottom up meth-63

ods [22, 1, 20, 18, 21] extract a set of features from the input images, and64

try to map them to the human pose space. This is achieved with a learning65

process that involves a typically large database of known poses that cover as66

much as possible the whole human poses search space. The type of descrip-67

tors employed, the mapping method and the actual poses database are the68

factors determining the accuracy and efficiency of these methods. Due to69

their nature, most of their computing time is spend on the offline processes70

of database creation and mapping, while the online performance is rather71

good.72

Top-down approaches [4, 6, 5, 26, 3, 28] use a fully articulated model of73

the human body and try to estimate the joints angles that would make the74

appearance of this model fit best the visual input. The model is usually made75

of a base skeleton and an attached surface. In some methods, complex surface76

deformations are allowed [6]. Having defined a model of the human body,77

different pose hypotheses can be formed. A typical top-down method consists78

of generating hypotheses and comparing them to the input visual data. The79

comparison is performed based on an objective function that measures the80

discrepancy between a pose hypothesis and the actual observations. The81

minimization of this objective function determines the pose that best explains82

the available observations. Typically, this is formulated as an optimization83

problem that amounts to the exploration of a very high dimensional search84

space. Kinematic constrains based on physiological data are often applied85

to the model, excluding non realistic poses and reducing significantly that86

4



search space. Constraining not only the pose but also the motion itself can87

further help reducing the complexity, for example with Kalman filters [10].88

However, this means a reduced generality and the necessity to build and learn89

human motion models.90

The main advantage of top-down methods is their flexibility. The em-91

ployed model can be changed easily, and the whole search space can be92

explored without any form of training. The price to pay for this flexibility is93

the computational cost of the online process. Due to their generative nature,94

most of the computational work needs to be performed online.95

Instead of trying to estimate the full body model in a single step, a96

variety of methods first identify body parts. Then, they either report them97

as the solution or they further combine them into a full model [20, 21].98

As in the case of hand tracking and according to the related categorization99

of Oikonomidis et al. [16], we can identify disjoint evidence methods and100

joint evidence methods [4, 6, 5, 26, 3, 28]. Joint evidence methods handle101

effortlessly collisions, self occlusions and all part interactions while disjoints102

evidence methods have to handle them explicitly.103

This paper presents a model-based, top-down pose estimation method104

that employs a single hypothesis. Furthermore, it is a joint-evidence method.105

The 3D body pose recovery is treated as a minimization problem whose ob-106

jective function quantifies the discrepancy between the 3D structure and ap-107

pearance of hypothesized 3D body model instances, and visual observations108

of a human body. Observations come from two off-the-shelf Kinect sensors.109

Optimization is performed through a variant of PSO tailored to the needs110

of the specific problem. Zhang et al. [28] proposed a solution to articulated111

human motion tracking that is also based on two RGBD sensors. Their ap-112

proach differs in the observation model that is being used and in the employed113

optimization technique. Other versions of PSO have been employed in the114

past for human body pose tracking [26, 3, 12], as well as for multicamera-115
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based and RGBD camera-based hand pose estimation [14, 15]. For example116

in [26] body-pose hypotheses are used to render silhouettes that are com-117

pared with respective observations. They adopt a hierarchical approach to118

the problem and employ a PSO variant to solve it. Their approach differs119

from our methodology both in the observation model and in the optimization120

strategy. In particular, we propose and present a novel PSO variant (pPSO).121

An extensive evaluation on a standard, publicly available data set annotated122

with ground truth shows that pPSO outperforms the baseline (bPSO) opti-123

mization method and is more accurate than an extensively used, bottom up124

approach [17] to the same problem.125

3. Tracking human body articulations126

The input to the proposed method is a volumetric representation of the127

human body (Fig.1(e)). This can be obtained by two RGBD sensors that are128

configured in a wide baseline setup, or by computing the visual hull of the129

human body based on a number of conventional RGB cameras. The first op-130

tion is preferable because it involves fewer cameras and because the resulting131

volumetric representation describes more accurately a 3D shape compared132

to its visual hull. The depth information also facilitates the segmentation of133

the human figure from the rest of the environment.134

The adopted 3D human model comprises of a set of appropriately as-135

sembled geometric primitives. Each body pose is represented as a vector136

of 35 parameters. Body articulation tracking is formulated as the problem137

of estimating the 35 body model parameters that minimize the discrepancy138

between the body hypotheses and the actual observations. To quantify this139

discrepancy, a representation of the volume occupied by a given body model140

is produced and compared to the volumetric representation generated by the141

two RGBD cameras. An appropriate objective function is thus formulated142

and a variant of PSO is employed to search for the optimal body configura-143

6



tion. The result of this optimization process is the output of the method for144

the given frame. Temporal continuity is exploited to track the body articu-145

lation in a sequence of frames. The remainder of this section describes these146

algorithmic steps in more detail.147

3.1. Observing a human148

At a certain moment in time, the input to the method is a set of two149

640× 480 depth images of a human, as provided by two intrinsically and ex-150

trinsically calibrated RGBD sensors [27]. Figure 1(a), (b) and (c), (d), show151

the RGB and depth information acquired by two such sensors. Foreground152

is segmented through change detection that is performed on the depth in-153

formation. More specifically, depth views of the environment without and154

with the human are available. Image points that exhibit pixelwise depth155

differences that exceed a certain threshold are detected and attributed to the156

scene foreground. The threshold used in this process is determined based157

on a study of the depth error estimation of the Kinect [23]. The resulting158

largest foreground blob in each depth image is kept for further consideration.159

A conservative estimation of the human spatial extend is performed by ap-160

plying a closing morphological operator to these blobs with a circular mask161

of radius r = 1. Due to sensor limitations, the depth of some points that162

lie within the detected foreground is unknown. However, it is necessary to163

give at least an approximate depth value to these points in order to produce164

a correct 3D reconstruction that is needed for further processing. Thus, the165

depth at such points is set equal to the average of the non-null depths of166

points within a radius of 2 pixels. The depth values of the background pixels167

is set to infinity.168

A 3D space of 150× 150× 150 voxels is then considered. Each voxel is a169

cube with side equal to sv = 15mm resulting in a volumetric representation170

of a 3D space of 2, 25 × 2, 25 × 2, 25 meters. The center of this space is171
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set equal to the mean position of the 3D points located onto the largest172

foreground blob of one of the two RGBD cameras. Each voxel of this space173

is set to 1 representing the initial assumption that the whole voxel space174

is fully occupied by the human figure. Then, the depth values of the two175

extrinsically calibrated RGBD cameras are used to carve out voxels that176

are not occupied. More specifically, for each 3D voxel v we can compute its177

Euclidean distance d from an RGBD camera and compare this to the distance178

d̂ that can be estimated from the depth values provided by that camera. If179

d < d̂ then this voxel should be carved out and takes the value of 0. This180

test is performed for both RGBD views. At the end of this process, voxels181

with a value of 1 provide the volumetric representation ov of the human. An182

example of such a representation is shown in Fig.1(e).183

We also compute the outer surface os of ov. On os, we apply a 3D distance184

transform using a spherical kernel of a radius equal to 7 voxels. In the185

resulting map osd, voxels that also belong to os have a value of 1, voxels that186

are more than 7 voxels apart from any surface voxel have a value of 0 and187

the rest of the voxels have a value from 1 to 0 that is inversely proportional188

to their distance (0 to 7 voxels) to the closest voxel of os. The observation189

model o = {ov, osd} that feeds the rest of the process consists of ov and osd.190

3.2. Modeling a human191

The employed human model consists of a main body, two legs, two arms192

and the head (Fig.1(f)). The main body is modeled with two articulated193

elliptic cylinders and three ellipsoids for the caps and the junction. The194

head is made of one cylinder and a sphere. Each arm consists of three195

spheres and two truncated cones, while a leg has two such cones, two spheres196

for the knee and the ankle, respectively, and one ellipsoid for the foot. The197

human model is depicted in Fig. 1(f) with color-coded geometric primitives198

(yellow for elliptic cylinders, red for ellipsoids, green for spheres and blue for199
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truncated cones).200

The kinematics of each arm is modelled using six parameters encoding201

angles. Two parameters determine the shoulder position with respect to the202

torso, three parameters the upper arm with respect to the shoulder and one203

parameter the elbow with respect to the upper arm. Six parameters are also204

used for a leg, three for the root, one for the knee and two for the ankle. Two205

parameters are used for the head, and three parameters for the articulation206

between the torso and the hip. The global position of the body is represented207

using a fixed point in the hip. The global orientation is parametrized using208

Euler angles. The above parametrization encodes a 35 degrees of freedom209

(DOFs) human model with each DOF represented by a single parameter.210

3.3. Evaluating a human hypothesis211

Having defined the parametric 3D model of a human, the goal is to es-212

timate the model parameters that are most compatible to the visual obser-213

vations (Sec. 3.1). To do so, given a human pose hypothesis h, a volumetric214

representation hv of the human model at pose h is generated through graph-215

ics rendering. The volume hv is rendered in a voxel space with identical216

characteristics to those of ov. A distance function Dv(hv, ov) is defined as217

follows:218

Dv(ov, hv) = 1− 2
∑

(ov ∧ hv)∑
(ov ∧ hv) +

∑
(ov ∨ hv)

. (1)

Intuitively, Dv quantifies the volumetric discrepancy between the observation219

volume ov and the hypothesis volume hv. In Eq.(1), symbols ∧ and ∨ denote220

logical operations between the binary values of corresponding voxels and221

summations are over the set of all voxels. When the volumes hv and ov are222

disjoint, the quotient in Eq.(1) is equal to 0. If these volumes are identical223

and coincide, the quotient is equal to 1. Thus, Dv is equal to 0 if volumes224

coincide and 1 if they are totally disjoint.225
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Besides volumetric discrepancy, we also compute a surface alignment dis-226

crepancy. To define this, we first compute the outer surfaces hs of the vol-227

umetric representation hv of the hypothesis h. Then, the surface alignment228

discrepancy Ds(osd, hs) is defined as:229

Ds(osd, hs) = 1− 1

np

∑
(osd · hs). (2)

In Eq.(2), the sum is over all voxels and · denotes standard multiplication of230

the values of the corresponding maps. osd is defined as in Sec. 3.1. Thus,231

Ds takes a value of 0 if the surface of the hypothesis coincides perfectly with232

that of the observation.233

Given the distance functions Dv and Ds, it is now possible to define the234

function E(o, h) that measures the discrepancy between the observation o235

and a given body pose hypothesis h:236

E(o, h) = Dv(ov, hv) + Ds(osd, hs). (3)

The minimization of E(o, h) with respect to h yields the body pose that best237

(as quantified by the objective function) explains the observations. The next238

section details how this minimization is actually achieved.239

3.4. Particle Swarm Optimization for human articulation tracking240

Particle Swarm Optimization (PSO) is a popular optimization algorithm241

that was introduced by Kennedy and Eberhart in [8, 9]. PSO looks for the242

optimum of an objective function employing a population of entities that243

evolve according to rules that emulate social interaction.244

Cenrtal to PSO are the notions of particles and generations. A particle245

holds a position/candidate solution in the parametric space where the search246

is performed. Each particle can estimate the fitness of its position by eval-247

uating the objective function at that point. Each particle is aware of the248

position at which it has achieved its own best objective function value. It249
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also knows the global best position that has ever been achieved by any of the250

rest of the particles. Two forces are defined that attract a particle to these251

two positions. The particles evolve themselves by moving in the search space252

under the previously described forces in iterations called generations. The253

details of this process are provided in [15].254

It has been observed that given enough particles and generations, the255

swarm reaches the global minimum of the objective function. The required256

number of particles and generations is problem-dependent and, thus, experi-257

mentally identified. A number of studies have shown that PSO is very compe-258

tent in optimizing complex, multidimensional, multimodal, non-differentiatable259

objective functions. The product of the number of particles to that of gener-260

ations determines the computational requirements of the optimization pro-261

cess. This is because this product represents the number of objective function262

evaluations that constitutes the most computationally demanding part of the263

algorithm.264

Typically, the particles are initialized at random positions and zero veloc-265

ities. Each dimension of the multidimensional parameter space is bounded in266

some range. As in [15], if during the position update a particle has a velocity267

that forces it to move to a point po outside the bounds of the parameter268

space, that particle effectively moves to the point pb inside the bounds that269

minimizes the distance |po − pb|.270

In this work, PSO operates in the 35-dimensional 3D body pose parameter271

space. The objective function to be optimized (i.e., minimized) is E(O, h)272

(Eq. 3) and the population is a set of candidate 3D body poses hypothesized273

for a single frame. Thus, the process of tracking a human requires the solution274

of a sequence of optimization problems, one for each acquired frame. By275

exploiting temporal continuity, the solution over frame Ft is used to generate276

the initial population for the optimization problem for frame Ft+1. More277

specifically, the first member of the population href for frame Ft+1 is the278
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solution for frame Ft; The rest of the population consists of perturbations279

of href . The variance of these perturbations is experimentally determined280

and depends on the characteristics of the observed motion and the image281

acquisition frame rate. The optimization for frame Ft+1 is executed for a282

fixed amount of generations. After all generations have evolved, the best283

hypothesis hbest constitutes the solution for time step t + 1.284

3.5. Perturbed PSO (pPSO)285

The above described methodology forms the baseline approach to the286

problem which we call bPSO. It has been verified experimentally that bPSO287

is competent in estimating the 6D global pose of the human body. However,288

the estimation of the 29 remaining parameters that are related to limb angles289

is not equally satisfactory. The swarm often gets stuck to local minima. To290

overcome this problem and to increase accuracy, we propose a PSO variant291

which we call pPSO that performs systematic perturbations/randomization292

on the articulation parameters. More specifically, the human body model is293

decomposed into seven branches, as shown in Fig. 2. Each branch consists294

of a set bp of primitives and has a set bd of internal articulation parameters.295

pPSO operates exactly as bPSO for a percentage of its generations. This296

percentage has been identified experimentally to be 40%. After those gener-297

ations, each particle is perturbed in a very specific way. First, one branch is298

randomly selected. Then, only the parameters of this branch are perturbed299

and replicated in the global particle representation. Additionally, the local300

(particle-dependent) best position for this particle is reset to the new particle301

position. After each and every particle is perturbed in this way, all particles302

are left to interact as in the bPSO scheme for gp generations. In all reported303

experiments, the value of gp was set to 6 generations. The process is repeated304

until the rest 60% of the PSO generations are lapsed.305

The particular scheme for perturbing particles/candidate solutions is jus-306
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tified by the study of the morphology of the human body and the objective307

function of the optimization problem. The human torso accounts for most308

of the body’s volume and, therefore, for the largest part of the objective309

function. Fine tuning a solution requires checking alternative configurations310

of the human limbs that are much smaller in size and less influential to the311

objective function. Thus, a targeted particle perturbation that affects only312

a branch at a time gives more chances to the algorithm to explore the true313

minimum of the objective function.314

Special care should be taken when a particle is perturbed with respect315

to its torso or hip branches. As shown in Fig. 2, these two branches are not316

leafs in the kinematics hierarchy. Thus, the perturbation of these branches317

affects the parameters of the rest of the branches, too. For this reason, as318

soon as these branches are perturbed, the global human kinematics model319

consistency needs to be enforced. This is achieve by employing inverse kine-320

matics. Consequently, a perturbation on the torso or the hip will in fact321

influence most, if not all the 35 parameters.322

4. Experimental evaluation323

The experimental evaluation of the proposed method was based on the324

Berkeley Multimodal Human Action Database (MHAD) [13]. This dataset325

features 12 human subjects with different body characteristics performing 11326

different activities (01-jumping, 02-jumping jacks, 03-bending, 04-punching,327

05-waving two hands, 06-waving one hand, 07-clapping, 08-throwing, 09-sit328

down/stand up, 10-sit down and 11-stand up). In each sequence, each ac-329

tivity is repeated several times. A motion capture system has been used to330

provide ground truth information regarding the position of all joints in all331

sequences. Additionally, the activities are recorded with a multicamera setup332

consisting of several conventional cameras as well as by two extrinsically cal-333

ibrated Kinect sensors. In all experiments reported in this paper, the RGBD334
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data provided by the two Kinect sensors feed the proposed method which335

determines the human body articulation. The resulting data are compared336

to the ground truth resulting from the motion capture data.337

To quantify the accuracy in body pose estimation, we adopt the metric338

used in [7]. More specifically, the distance between a set of corresponding339

3D points in the ground truth and in the estimated body model is measured.340

Each such point (four per leg, three per arm and one for the head) is marked341

in Fig. 2 with a red “x”. The average of all these distances over all the frames342

of the sequence constitutes the resulting error estimate ∆. Another metric343

reports the percentage of these distances that are within some predefined344

threshold At. We will refer to this metric as the accuracy in human body345

pose estimation. At was set to 10cm for all experiments. For example, an346

accuracy of At = 70% for a sequence means that 70% of the joints were347

estimated at positions that are within less than 10cm from the ground truth,348

in all frames.349

Several experiments were carried out to assess quantitatively and qualita-350

tively the accuracy and the performance of the proposed human articulation351

tracking method. The goal of the first experiment was to assess the error in352

joints position estimation as a function of the computational budget devoted353

to PSO. To do so, we choose one of the sequences of the MHAD dataset that354

consists of 80 consecutive human poses showing a human performing activity355

02 (jumping jacks). The rationale for selecting this particular activity and356

sequence is that (a) it is executed in high speed and (b) it involves the whole357

body, so all body model parameters change values as a function of time.358

Thus, it is expected that this sequence constitutes a worst case scenario, at359

least among activities represented in the specific dataset.360

Figure 3 illustrates the error ∆ in joints position estimation as a function361

of the pPSO parameters (number of generations and particles per genera-362

tion). As explained in Sec. 3, the product of these parameters determines363
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the computational budget of the proposed methodology, as it accounts for364

the number of objective function evaluations. The horizontal axis of the plot365

denotes the number of PSO generations. Each plot of the graph corresponds366

to a different number of particles per generation. Each point in each plot367

is the average of the error ∆ for 5 runs of an experiment with the specific368

parameters. A first observation is that ∆ decreases monotonically as the369

number of generations increase. Additionally, as the particles per generation370

increase, the resulting error decreases. Nevertheless, employing more that 65371

generations and more than 200 particles results in a reduction of the error ∆372

that is disproportionally low compared to the increase in the required com-373

putational budget. For this reason, 200 particles evolving in 65 generations374

was retained in all further experiments.375

The second experiment aimed at evaluating the performance of the method376

across different human subjects. Twelve sequences showing twelve different377

subjects performing the same activity (activity 04, boxing) were considered.378

Since the method operates in the Euclidean 3D space, tracking is not in-379

variant to the actual model dimensions. Additionally, tracking needs to be380

initialized with a body pose close to that of the first frame of the considered381

sequence. In our experiments, these subject-specific model parameters and382

initial model configurations were estimated manually.383

Figure 4 illustrates the error ∆ and the accuracy of the proposed method384

(pPSO). For the purposes of comparative evaluation, errors and accuracies385

are also provided for bPSO and for the NITE skeleton estimation method [17].386

All methods were provided the same initialization. Additionally, the pPSO387

and the bPSO were assigned exactly the same computational budget. Ta-388

ble 1 summarizes the individual errors and accuracies shown in Fig. 4. It389

can be verified that the pPSO method outperforms both the bPSO and the390

OpenNI methods, in all aspects (average error, standard deviation of error391

and accuracy). It is important to note that pPSO is more computation-392
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Method Mean ∆ Std. ∆ Accuracy (%)

OpenNI method 52.9 49.5 87.3

Baseline method (bPSO) 62.2 69.5 82.3

Proposed method (pPSO) 41.8 33.1 94.4

Table 1: Comparison of the proposed method (pPSO), the baseline

PSO method (bPSO) and the openNI method for the case of different

humans performing the same action (boxing).

ally intensive compared to [17] and that it uses two sensors rather than one.393

Still, in applications that can afford a second sensor and in which accuracy394

is more important than computational performance, the proposed method395

constitutes an option worth considering.396

In a third experiment, the goal was to assess the proposed method with397

respect to different activities. For that purpose, the evaluation was performed398

on image sequences showing a single subject performing eleven different ac-399

tivities. Figure 5 illustrates the obtained results in a way analogous to that of400

Fig.4. Again, pPSO outperforms the OpenNI and bPSO methods. It should401

also be noted that for actions like bending (action 03) and sit-down/stand-402

up (action 09) that exhibit considerable self- and body-object occlusions, the403

proposed method performs considerably better.404

Finally, Table 3 summarizes all performed experiments. It can be verified405

that pPSO achieves a significant reduction in mean error and error variance406

compared to the bPSO and OpenNI methods as well as a significant increase407

in accuracy.408

Figure 6 shows characteristics snapshots of the MHAD dataset and the409

skeletons that have been extracted by the pPSO, OpenNI and bPSO methods410

superimposed on the RGB frame of one of the two employed RGBD sensors.411
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Method Mean ∆ Std. ∆ Accuracy (%)

OpenNI method 54.5 46.2 86.3

Baseline method (bPSO) 50.6 48.8 89.5

Proposed method (pPSO) 39.3 27.3 96.3

Table 2: Comparison of the proposed method (pPSO), the baseline

PSO method (bPSO) and the openNI method for the case of all

actions performed by the same subject (subject 09).

Method Mean ∆ Std. ∆ Accuracy (%)

OpenNI method 54.5 46.2 86.3

Baseline method (bPSO) 50.6 48.8 89.5

Proposed method (pPSO) 39.3 27.3 96.3

Table 3: Aggregate comparison of the proposed method (pPSO),

baseline method (bPSO) and openNI method in all tested sequences.
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Finally, Fig. 7 provides additional characteristic examples of the solutions412

provided by the pPSO method. A much more complete qualitative assess-413

ment of the performance of the proposed method can be performed based on414

the supplementary material accompanying this paper which is available at415

http://youtu.be/n5irgHVuFwc. It should be noted that this video shows416

the output of the method without any temporal smoothing between succes-417

sive frames.418

The proposed method runs on a computer equipped with a 8-core Intel419

i7 950 CPU, 4 GBs RAM. On this system, the average computing time for420

our non-optimized CPU-only implementation is 20 sec/frame. However, all421

involved computations are inherently data parallel and tailored for a GPU422

implementation. This is also evidenced by the real-time performance (20 fps)423

that is achievable by GPU implementations of similar approaches for the case424

of 3D hand tracking [15].425

5. Discussion426

We proposed a model-based method for tracking the articulated motion427

of the human body using a volumetric 3D representation that is built by428

fusing the depth measurements provided by two calibrated RGBD sensors.429

The proposed method follows a hypothesize-and-test approach that casts430

the articulated motion tracking problem into a search problem in a high-431

dimensional space. Searching is performed with a stochastic optimization432

technique, called PSO, resulting in a baseline implementation called bPSO.433

We also proposed a perturbation scheme that is applied on top of the bPSO434

solutions that results in the pPSO method. A series of experiments per-435

formed on a ground-truth-annotated data set demonstrated quantitatively436

and qualitatively that pPSO outperforms in error and accuracy both the437

OpenNI human skeleton estimation method and the bPSO method. This438

is even more striking in the challenging cases where the body configuration439
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exhibits significant self occlusions. Thus, in situations where small error and440

high accuracy is more important that the burden and the overhead of using441

a second RGBD sensor, the proposed pPSO markerless human articulations442

tracking method constitutes an attractive approach.443
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(a) (b)

(c) (d)

Figure 1: Graphical illustration of the proposed method. Two RGB

frames ((a), (c)) and the corresponding depth maps ((b), (d)). The

volume (e) occupied by the person is reconstructed using the depth

maps. The proposed method fits the employed human body model

(f) to this volume, recovering the body articulation (g).
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Left leg branch
6 joint parameters,
6 primitives

Right leg branch
6 joint parameters,
6 primitives

Hip branch
6 position parameters,
3 primitives

Torso branch
3 joint parameters,
2 primitives

Left arm branch
6 joint parameters,
5 primitives

Right arm branch
6 joint parameters,
5 primitives

Head branch
2 joint parameters,
2 primitives

Figure 2: Definition of human body branches. The perturbation of

the torso and hip branches results in changes in the parameters of

their child branches. Model points with a red “x” denote joints whose

3D position is taken into account in defining the tracking error in the

quantitative experimental evaluation of the method.
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Figure 3: Quantitative evaluation of the performance of the method

with respect to the pPSO parameters.
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Figure 4: Quantitative evaluation of the method applied to 12 sub-

jects performing the same action (boxing). (a) Error ∆ and variances,

(b) accuracy for the proposed method (pPSO, green bars), baseline

method (bPSO, red bars) and OpenNI human skeleton estimation

(blue bars).
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Figure 5: Quantitative evaluation of the method applied to 11 ac-

tions performed by the same person. (a) Error ∆ and variances, (b)

accuracy for the proposed method (green bars) and openNI human

skeleton estimation (blue bars).
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Figure 6: Qualitative comparison of the pPSO (left), OpenNI (mid-

dle) and bPSO (right) methods based on characteristic frames of the

MHAD dataset.
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Figure 7: Various configurations on different subjects evaluated by

the method.
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Abstract

In this work, we provide a discriminative framework for online simultaneous segmentation
and classification of visual gestures, which is also able to detect novelty in the input data.
To this end we employ Hough transform to vote in a three - dimensional space for the begin
point, the end point and the label of the segmented part of the input stream. An SVM
in combination with an objective function are used to model each class without neglecting
novelty detection and to suggest putative labeled segments on the timeline. To identify
the most plausible segments among the putative ones we apply an evolutionary algorithm,
which combines (a) an objective function, which considers the begin point the end point
and the label (b) a constraint that there is no overlap between the begin and the end
points of the identified segments. The performance of our method is evaluated on synthetic
data; it is found to be of comparable or higher accuracy to the state of the art for online
segmentation and classification, while, unlike those methods, it is able to handle novelty.

Keywords: Time Series, Hough Transform, Support Vector Machines

1. Introduction

The problem of detecting sequential patterns given a stream of observations is of great
importance, as it appears in a broad spectrum of application domains. To name just a
few, those domains include annotation of videos depicting gestures or activities Yao et al.
(2010), Gall et al. (2011), natural language sentences (e.g., parsing, chunking, named entity
recognition), labeling biological sequences (e.g., protein secondary structure prediction). In
this paper we concentrate on the problem of online segmentation of visually observable
gestures, i.e., we have to provide labels given the fact that the visual observations arrive

c©2014 Dimitrios Kosmopoulos and Konstandinos Papoutsakis and Antonis Argyros.
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Figure 1: Overview of the proposed method: The action primitives in the cosidered time
span vote in a 3D Hough voting space (begin-end-class). The SVM receives the
votes and suggests the putative segments. The segments that maximize an objec-
tive function compose the final solution, which is found via a genetic algorithm.

stream-wise on a sequential fashion and we need to decide on the label shortly after they
are received, without having available the full sequence.

The video segmentation has been tradionally treated separately from the classification
step, i.e., after a segmentation step using low level cues the resulting segments were assigned
to predefined classes. However, these two problems are correlated and can be better handled
considering simultaneously the low level cues and the high level models representing the
candidate classes (see e.g., Shi et al. (2008), Hoai et al. (2011), Chatzis et al. (2013)).

Following that observation, generative models can build probabilistic models of actions
and can give the posterior of assigning labels to observations. In case that an unknown
activity appears, the posterior probability given the known classes will be low, so that will
easily signify an instance of a novel class (novelty detection). However, generative models
rely on simplifying statistical assumptions for computing the joint probability of the states
and the observed features, whereas a more general discriminative model may better predict
the conditional probability of the states given the observed features. As a result, several
researchers have investigated the use of discriminative models of actions such as Conditional
Random Fields Chatzis et al. (2013), Morency et al. (2007), Support Vector Machines Hoai
et al. (2011), Tang et al. (2012) or random forests Yao et al. (2010), Gall et al. (2011).
However, the discriminative models are not without problems, since they cannot easily
handle untrained actions because they were not part of their optimization process.

In this work we seek to mitigate the aforementioned limitation of the discriminative
methods for simultaneous segmentation and classification of sequential data by employing a
discriminative Hough transform. By collecting the votes generated by action primitives we
are able to detect putative segments, i.e., the time span as well as the action type associated
to each of them using an SVM. In the following step we evaluate the combinations of the
putative segments and keep those that explain best the observations; to this end we employ
an objective function, which is evaluated by a genetic algorithm. Figure 1 gives an overview
of the method.
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More specifically, the innovations of the proposed approach are:

1. A generic voting scheme in 3D space, which is defined by the start point, the end
point and the class in order to segment the observation stream in an online fashion;

2. Detection of data that belong to novel classes for which the employed classifiers have
not been trained yet.

3. A discriminative framework for vote weighting in the aforementioned 3D voting space;

4. Enforcement of compatibility constraint between putative matches.

To our knowledge, although Hough transform has been used again in the past for action
recognition (e.g., Yao et al. (2010)), ours is the first work that uses generalized Hough
transform to classify and segment time series online in a way that is decoupled from the
observations. This practically means that the proposed framework can handle in principle
any observation model. Furthermore, the proposed method is able to identify observations
generated by novel latent labels, which have not been considered during training.

The rest of the paper is organized as follows: In the next section we survey the related
work. In section 3 we describe the proposed framework, which includes the generation of
hypotheses via voting and the evaluation via an evolutionary algorithm. Section 4 describes
the experimental results and section 5 concludes this work.

2. Related work

The simultaneous segmentation and classification of visual or other time series has gained
in popularity recently.

Generative models have been used extensively. In Fox et al. (2011) a Bayesian nonpara-
metric approach is presented for speaker diarization that builds on the hierarchical Dirichlet
process hidden Markov model. Typical approaches that exploit the hierarchical structure
of time series to classify actions, are the hierarchical HMMs Fine et al. (1998) or the lay-
ered hidden Markov model Oliver et al. (2004). The semi-Markov model, which explicitly
captures the duration has also been employed Duong et al. (2005), Natarajan and Nevatia
(2007).

Change point detection algorithms have been popular for time series segmentation (see
e.g., Lefakis and Fleuret (2012), Turner et al. (2009)), which performs an analysis in a
sliding window to detect changing patterns. However, they operate locally and it is not
clear how appropriate they can be for complex visual activities, which can be described by
high-dimensional and highly variable feature vectors.

In Chatzis et al. (2013) a discriminative framework was proposed. The sequences were
assigned to classes and segmented into subsequences using conditional random fields. The
method requires the full sequence in advance and cannot operate in an online fashion.
Similarly, conditional random fields were used in Sminchisescu et al. (2006), Quattoni et al.
(2007).

In Shi et al. (2008) a discriminative approach was introduced under a semi-Markov model
framework, and a Viterbi-like algorithm was devised to help efficiently solve the induced
optimization problem. The segments that gave the best score were the selected ones. In
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Hoai et al. (2011) a joint segmentation and classification scheme was presented and it was
shown that it would be better to maximize the confidence of the segment assignment, i.e.,
the score difference between the first and the second best assignment. To this end a multi-
class SVM was used and a dynamic programming approach was followed for efficient seeking
of candidate segments and their evaluation. In Tang et al. (2012) latent labels and state
durations are optimized in a maximum margin approach. The results were very promising,
but the authors made the assumption that the video sequences contain only instances of
classes that were previously learned. This scheme has problems if segments belonging to
novel, unknown classes appear between the known ones and the dynamic programming
scheme becomes inapplicable. A possible solution could be to model the content that does
not belong to any of the known categories as a separate class, however that approach does
not handle properly the novel content that may appear.

Another line of research is followed by methods that seek to exploit the co-occurence of
tasks see, e.g., Zhu et al. (2013), Izadinia and Shah (2012). Our method does not currently
exploit this information, but this depends solely on how we treat the overlapping tasks that
we recognize. In this first presentation of our method we deal exclusively with the simpler
problem of non-overlapping tasks by penalizing the overlap in the post processing phase.

Recently a great deal of work has been done on deep learning, e.g., convolutional neural
networks Ji et al. (2013), Le et al. (2010) and restricted Boltzman machines Hinton et al.
(2006). These methods create a feature mapping in an unsupervised way and then they
apply some standard classification methods to classify the data. Our method could use the
results of those approaches, since it is agnostic to the type of features used to model the
time series data.

Related to our approach is the Hough transform. In Maji and Malik (2009) a discrimi-
native Hough transform was used for object detection, where each local part cast a weighted
vote for the possible locations of the object center. It was shown that the weights can be
learned in a max-margin framework, which directly optimizes the classification performance.
Its resilience to noise and the fact that multiple objects can be present simultaneously make
the Hough transform a very attractive option, which can be generalized to time series and
therefore to gesture and action recognition.

An interesting approach for the problem of action recognition using Hough was presented
in Yao et al. (2010), where the action segmentation was coupled to the action positioning
problem for a single actor. By considering some features such as optical flow intensity and
position, a Hough forest was built and then used to cast votes in real scenarios. Compared
to that work we decouple the position estimation problem from the classification and seg-
mentation problem, which reduces the dimensionality of the voting space. In Yao et al.
(2010) the actor was represented by a rectangle, while it is not clear how such a coupled
framework would generalize for more complex problems involving high dimensional obser-
vations (e.g., multiple actors, skeleton models, region descriptors). Futhermore, it is also
unclear how this approach could generalize in other domains.

We propose a novel discriminative Hough transform for time series analysis, where uni-
grams or n-grams are used instead of local descriptors. We deal with concurrent segmenta-
tion and classification in time-series instead of object detection in images where the voting
is different. We vote in a 3D space which defined the time span and type of segment (begin
point, end point and class label).
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3. Voting framework

In our framework we seek to identify simultaneously (a) the instances of classes C of sub-
sequences in time series data, (b) the location x of the class-specific subsequence, in other
words the begin and the end time point in the data.

Let ft denote the feature observed at time frame t. Let S(C, x) denote the score of class
C at a location x. The S(C, x) is a cell in a 3D voting space. The first dimension is defined
by the class C and the other two dimensions define the ”location” x, which is defined by
the begin and the end point.

The implicit model framework obtains the overall score S(C, x) by adding up the indi-
vidual probabilities p(C, x, ft, lt) over all observations within a time window (lt indicates if
observations in time t belong to the window), i.e.,:

S(C, x) =
∑

t

p(C, x, ft, lt) =
∑

t

p(ft, t)p(C, x|ft, lt) (1)

We define M action primitives, which result from clustering of the visual observation
vectors ft. Let Pi denote the i-th gesture primitive. By assuming a uniform prior over
features and time locations and marginalizing over the primitive entries we get:

S(C, x) =
∑

t

p(C, x|ft, lt) =
∑

t

p(Pi|ft, lt)p(C, x|Pi, ft, lt) (2)

By observing that the primitives Pi depend only on the observed features ft and not
on the time location lt that they appear, we can simplify p(Pi|ft, lt) to p(Pi|ft). Simi-
larly, p(C, x|Pi, ft, lt) depends only on the matched primitive Pi and t and simplifies to
p(C, x|Pi, lt). Therefore we can write:

S(C, x) =
∑
i,t

p(Pi|ft)p(C, x|Pi, lt) (3)

which after applying the Bayes rule becomes:

S(C, x) =
∑
i,t

p(Pi|ft)p(x|C,Pi, lt)p(C|Pi, lt) (4)

The term p(Pi|ft) can be calculated by applying Bayes rule assuming uniform distribu-
tion for ft:

p(Pi|ft) ∝ p(ft|Pi)/p(Pi) (5)

We use Gaussian mixture models (GMM) to represent the distributions of the observa-
tion vectors, and to express one primitive by one component of the GMM. The denominator
term can be simply obtained by evaluating the respective component of the GMM, while
the nominator is given by the associated prior.

Returning to (4) the term p(x|C,Pi, lt) gives the temporal distribution in the locations
x given the class C and the location lt of the primitive Pi. This can be modelled from
the training samples. The third term is the weight of the primitive Pi emphasizing how
confident we are that the primitive Pi at time t matches the class C as opposed to another
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class. If we assume that the p(C|Pi, lt) is invariant to the location lt of the primitive we
can simplify the term to p(C|Pi, lt) = p(C|Pi) ∝ p(Pi|C)/p(Pi). The weight is defined
independently for each primitive, so we refer to it as the naive-Bayes weights.

3.1 Hypothesis generation via discriminative voting

Our voting framework can be the basis for a discriminative voting scheme, which generalizes
for time series the framework presented in Maji and Malik (2009), which dealt with object
detection.

The voting scheme can be optimized using maximum margin optimization if we observe
that the score S(C, x) is a linear function of p(C|Pi). By simplifying p(C|Pi, lt) = p(C|Pi)
and by considering eq. (4) we have:

S(C, x) =
∑
i,t

p(Pi|ft)p(x|C,Pi, lt)p(C|Pi)

=
∑

i

p(C|Pi)
∑

t

p(Pi|ft)p(x|C,Pi, lt)

=
∑

i

wi × ai(x) = W T
c A(x)

(6)

where we define AT = [a1a2...aM ] (hereafter mentioned as the activation vector), M is the
number of motion primitives and ai is given by:

ai(x) =
∑

t

p(x|C,Pi, lt)p(Pi|ft) (7)

The above formulation highlights the fact that the weights W T
c depend on the conditional

probabilities of the class instances given the primitives, so they are class-specific. Given the
dot product formulation we notice that they can be optimized in a discriminative fashion to
maximize the score for correct segmentations and labels. Due to the discriminative nature
of the optimization we expect much better results compared to the voting scheme based
only on the estimation of p(C|Pi).

The training of the classifier is performed as described in the following. For a given
training sequence that is observed we set the respective class-specific labels in the respective
locations xi, i.e., at the bins that correspond to the correct begin/end points. The rest of
the locations are defined to belong to an ”idle” class. In other words, we define the ground
truth labels S(C, xi) for all possible locations xi within a time window. For each of locations
xi we need to find the activation vectors A(xi), which are calculated by using eq. (7).

Given the labels S(C, xi) and the respective A(xi) we need to calculate the weights
Wc. The Support Vector Machine is a discriminative framework that maximizes the margin
between samples of different classes. Therefore we use it to learn the weights Wc in a
multiclass fashion (see e.g., Crammer and Singer (2002) or multiple one-versus-all binary
SVM settings) and then to classify the segments that receive a lot of votes. This approach,
depending on how we do the training, can partition the parameter space into subspaces,
each subspace associated to a specific class. However, this does not solve the problem of
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l([tb, te], C) =
M∑
i=1

p(mtb = i|C)p(otb |mtb = i, C) +
M∑
i=1

p(mte = i, C)p(ote |mte = i, C)

+
te−1∑
t=tb

M∑
i=1

p(ot|mt = i, C)
M∑

j=1

p(j|i, C)p(ot+1|mt+1 = j, C)

(8)

arg max
I[tb,te]

∑
[tb,te]∈Ψ

∑
[tb′ , te′ ] ∈

{Ψ− [tb, te]}

I[tb,te] × I[tb′ ,te′ ] × c([tb, te], [tb′ , te′ ])× l([tb, te]) (9)

the appearance of novel samples, which can be wrongly assigned to one of the pre-trained
classes as false positive.

Generally we cannot exclude the possibility of novel latent classes giving new observa-
tions. For dynamic environments, such as manual communications via gestures, it is almost
certain that at some point we will come across some observations that will not be explain-
able by the existing models. Assigning a specific class label to represent all the possible
unknown classes is not the best solution, since the related model has to be really complex
to cover the variety of possible observations and most importantly these observations are
not known in advance.

We solve the problem of false positives by evaluating each putative segment using a
likelihood function, hereafter denoted as l([tb, te], C), where tb,te denote the beginning and
the end of the segment on the time axis and C is the class the segment was assigned
to. The likelihood is given by eq. (8); The first term represents the prior for the first
sequence primitive, the second one represents the prior for the last sequence primitive and
the last one represents the transition likelihood between primitives. As mt we indicate the
primitive label in time t and as ot the measurement vector in time t. The labels’ likelihoods
are probabilistically summed, i.e., we avoid the hard assignment of labels to handle noisy
observations. We additionally require a minimum value for the sum associated to one
transition, and in the opposite case we set the likelihood to zero. If we hadn’t done it, the
longer sequences which involve many transitions would have given always higher likelihood.

An alternative could be to model each class separetely, e.g., by using approaches like the
one-class SVM Schölkopf et al. (2001). However, that would give too few positives, while
what we desire is a relatively large number of putative segments, from which we will be
able to find the optimal assignment at a second stage (a) by evaluating eq. (8) and (b) by
running a compatibility test between putative segments as we will describe in the following.

3.2 Hypotheses evaluation via an evolutionary algorithm

As may happen in many cases, the local maxima in the Hough parameter space may be
the result of noise and thus may not correspond to a real segment that can be classified
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c([tb, te], [tb′ , te′ ]) =
{

a if [tb, te] ∩ [tb′ , te′ ] = ∅
−a if [tb, te] ∩ [tb′ , te′ ] 6= ∅ , a > 0 (10)

according to the known classes. Here we present a method to eliminate false local maxima
and to keep those segments that explain best the whole sequence of observations.

Let’s assume that Ψ is the set of candidate segments which (a) were proposed by the
SVM and (b) gave high likleihood according to eq. (8). The size of Ψ is assumed to be K
for a certain time window. Then the possible combinations of segments to cover the given
window are K single segments, K(K − 1) combinations of two segments, K(K − 1)(K − 2)
combinations of three segments etc. Therefore the total configurations that need to be
evaluated is K +K(K − 1) +K(K − 1)(K − 2) + ...+K! = O(K!). Obviously we cannot
apply brute force to evaluate all possible combinations, especially whenK is large. Therefore
we propose a genetic algorithm to find a suboptimal, yet tractable solution by optimizing
an objective function.

The objective function to optimize is given by eq. (9), where I[tb,te] is the (binary)
indicator function that we seek to optimize and defines whether a segment [tb, te] that
begins in time tb and ends in te is considered in the solution or not.

The factors c([tb, te], [tb′ , te′ ]) are deterministically defined as in eq. (10); In other words
whenever a segment [tb, te] does not overlap with another segment [tb′ , te′ ] their individual
likelihoods sum up in the objective function (coefficient has a positive value), while in the
opposite case the objective function is decreased (coefficient has a negative value).

Given the class instances we formulate a solution vector reperesentation of I[tb,te], which
contains binary entries. Each of those entries corresponds to a segment that we evaluate
against the objective function. To avoid unnecessarily high dimensions we consider only
the segments that received more votes than a threshold. For candidate segments that fully
overlap (same begin - end points) only the one with the maximum likelihood is considered.
We allow the following operations: (a) mutation: a random digit changes to its comple-
mentary value (b) crossover: considering two solutions S1, S2, the solutions S3 and S4 are
produced by randomly interchanging the corresponding values of S1 and S2. By defining the
mutation and the crossover probability we are able to obtain after a sequential evaluation
a set of solutions, which will locally maximize the objective function.

4. Experimental results

To verify the validity of our method we have experimented with a synthetic dataset. We
have generated a dataset of 2D sequences using hidden Markov models (HMMs). More
specifically we created randomly ten HMM models, each composed of up to three different
states, by random definition of means, covariances, priors and state transitions. Then for
each of them we performed sampling and we produced 100 sequences of approximate length
between 450 and 750 samples each. These sequences were concatenated at a random order
to form bigger sequences (approximately 2000-2500 frames long) consisting of one instance
per class (ten classes in total).

For our comparisons we implemented the optimization scheme that maximizes the con-
fidence for segments similarly to Hoai et al. (2011) (herafter denoted as MaxConfidence)
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and the scheme that maximizes the overall score similarly to Shi et al. (2008) (hereafter
denoted as MaxScore).

A feature mapping of the 2D features to a high dimensional space with a method similar
to Tsochantaridis et al. (2005) and Hoai et al. (2011) seems to be advantageous for the
MaxConfidence and MaxScore methods. We used two types of features, namely interactions
between the observation vectors and the set of predefined states, as well as the transitions
between states of neighboring frames along the subsegment. This results into an additive
feature mapping:

φ(o(tb,te]) =
te∑

j=tb+1

[
φobs(oj)
φint(oj)

]
(11)

Here oj denotes the frame j of time series O, φobs(oj) and φint(oj) are the observation
and interaction feature vectors, respectively. These feature vectors are computed as follows.
First we build a dictionary of temporal words by clustering the raw feature vectors from
the time series in the dataset. Let c1, . . . , cr denote the set of clustering centroids.

We consider φobs(oj) as a r×1 vector with the i-th entry is φobs(oj) = µ exp(−γ ‖oj − ci‖2).
Intuitively, the i-th entry of observation vector is the pseudo-probability that xj belongs to
state i, which is proportional to how close is oj to the cluster centroid ci. The scale factor
µ is chosen such that the sum of the entries of φobs(oj) is one.

The interaction feature vector φint(oj) is defined as a r2 × 1 vector, with:

φint
(u−1)r+v(oj) = φobs

u (oj)φobs
u (oj−1),∀u, v = 1, . . . r (12)

The above quantity is the pseudo-probability of transition from state v to state u at
time j. The interaction feature vector depends on both the observation vectors of the frame
oj and the preceding frame oj−1.

Given the dataset we investigated two different settings. To make our method compara-
ble to existing work, we initially made the assumption of a multiclass problem, where all the
knowledge was given in advance to the system, i.e., no instances stemming from unknown
latent classes appeared. This implies that a label from the known set of labels had to be
assigned to every frame. We used 50% of the sequences for training and the rest for testing.

In table 1 we present the confusion matrices of our method, MaxConfidence and MaxS-
core. The results are evaluated on a frame by frame basis. In our method we have an
additional class ”0” which denotes the unknown actions. Despite that, when compared to
the other methods ours shows generally similar or higher per class accuracy after feature
mapping, as in Hoai et al. (2011), while our total accuracy is 89.44% compared to 79.44%
and 88.58% of MaxConfidence and MaxScore respectively. Our method is agnostic about
the existence of instances stemming from novel classes, and therefore small gaps falsely as-
signed to novel observations may appear. This is the largest source of error, i.e., segments
that have actually larger duration are detected as shorter because the longer ones are some-
times not suggested as putative segments. On the contrary, MaxConfidence and MaxScore
use the fact that there are no novel observations and that there are no gaps between the
putative segments. Given this experimental setting of continuous observations stemming
from known classes, a post processing step that would fill the gaps would most probably
increase further the accuracy of our method; however this is not the main scope of this
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Table 1: Results for synthetic data when training with all classes (proposed, MaxConfi-
dence, MaxScore )

Table 2: Results for synthetic data when training with 5 out of ten classes (proposed, Max-
Confidence, MaxScore )

work (again, this setting was meant to establish a common reference among the different
methods).

The second setting was more appropriate for showcasing the merits of our method.
We assumed that some of the observed instances resulted from unknown latent classes.
The main goal was to evaluate how our method performs in such a setting, where the
MaxConfidence and MaxScore are actually inapplicable due to their initial assumptions.
We excluded the instances of five classes from training and we trained with the rest. The
results are displayed in Table 2. Clearly our method gives very promising results, exhibiting
accuracy 96% (assignment of instances from 6-10 to 0 were considered true). The other
methods falsely classified the unknown classes as known, which was the best that they
could do. Clearly, the higher amount of novel observations we have, the lower the accuracy
of MaxScore and MaxConfidence will be.
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5. Conclusion

We have presented a novel framework for the simultaneous segmentation and classification
of known and novel data and we have applied it on synthetic time series. Our method
performed similarly or better than the competing methods on settings when full training of
all classes was performed in advance. In settings where we had instances of novel classes our
method classified them as unknown, while MaxScore and MaxConfidence failed due to the
false assumption of fully trained latent classes. To our knowledge this is the first method
having this property for online classification.

The next step is the application of our method on real time series and namely the
Chalearn (Escalera et al. (2013)) and the Berkeley (Vidal et al. (2013)) datasets.
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