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Abstract— While navigation based on 2D laser data is well
understood, the application of robots at home environments
requires seeing more than a slice of the world. RGB-D cameras
have been used to perceive the full scenes and solutions exist
consuming extensive computing power. We propose a setup
with two RGB-D cameras that covers the need for conflicting
requirements regarding localization, obstacle avoidance, object
search and recognition, and gesture recognition. We show that
this setup provides sufficient data to enable navigation at homes
and we present how ROS modules can be configured to use
virtual RGB-D scans instead of laser data for operation in
real-time (10Hz). Finally, we present first results of exploiting
this versatile setup for a home service robot that picks up things
from the floor to prevent potential falls of its future users.

I. INTRODUCTION

Service robots are envisioned to support humans in a
variety of everyday activites, such as cleaning, fetching and
carrying objects, or monitoring and assisting older adults [1]–
[3]. Therefore robots have to enter domestic environments
and need to be equipped with a sensor set-up that allows
close and safe interaction with the user. Besides sensors
mounted on the robot itself, ambient assisted living envi-
ronments (AAL) can add information and allow for more
complex and locally distributed tasks.

Common to these different applications is that the robot
should be able to navigate in a cluttered 3D environment,
to detect users and their gestures, and to recognize objects.
While technical solutions exist for each of these core use
cases, there are only few robot systems that integrate all
functionalities and the solutions that exist are rather costly,
e.g., PR2 [4] or Care-o-bot [5], as pointed out in [3]. The
CompanionAble robot is more affordable, but it still uses
expensive sensors.

Up to now only service robots with very limited func-
tionality have entered private households, such as vacuum
cleaners and entertainment robots. One reason for this is
definitly the cost factor. With the intention to enter a home
market, which presents a high cost-saving potential, it is
important to study affordability. While cost factors can be
reduced at all fronts, we inspect more closely the sensor
system needed for a versatile home robot. The intention is
to propose an affordable sensor setup that provides data for
all use cases with a minimal configuration. The inherent
conflicts to resolve can be summarised as follows:
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1) Most relevant navigation problems are considered prac-
tically solved using rather expensive 2D laser scanners
with 180◦ or wider field of view (FOV) mounted low
on the robot front [6], [7]. There exist good datasets
for mapping and localization, e.g. [8], and open source
solutions in ROS. However, if obstacle avoidance is
limited to one height, a shoe or table edge would go
undetected, both likely to be found at home. A second
laser or camera looking downwards is required to deal
with these cases.

2) Detecting the user and objects both require RGB or
RGB-D images and a camera position higher on the
robot. While it is good to look rather straight ahead
for users, objects on tables or on the floor are better
seen from above than from a degenerated side view.

In this paper we propose a sensor setup based on two
RGB-D cameras (Fig. 1): camera 1 is mounted on the robot
front similarly to lasers and camera 2 is mounted on a robot
head that has at least two positions to look straight forward
or to look down. Camera 1 obtains data for the purpose of
seeing as far as possible for localization, while camera 2
either looks straight for user and gesture detection or looks
down to find obstacles. The search for objects can use both
viewing angles. Alternatively to the pivoting camera 2, two
cameras could be used. Since the head can also be used as
an indication to the user of what the robot is paying attention
to, we prefer the proposed version.

Fig. 1. Final design of our robot, Hobbit, with two RGB-D sensors. The
top RGB-D sensor in the head of the robot can be tilted for object detection,
obstacle avoidance, object grasping and object learning tasks.

One of the main problems in current robotics is the tran-
sition from theory to working systems, using and improving
over state-of-the-art tools. The contribution of this paper is
related to this, showing why the proposed setup with two
RGB-D cameras can fulfill the core home tasks and hence is
a step forward to more affordable service robots. In particu-



lar, we focus on navigation with the proposed setup and show
how standard methods designed for laser data need to be
adapted to cope with the lower accuracy, shorter range, and
the small FOV of RGB-D sensors. Furthermore, depending
on the specific robot and place to mount the sensors, there
may be a blind spot in front of the robot. We show how to
overcome these issues by dynamically adapting the planning
frequency and merging local information with the global
path. And how to cope with possibly reduced localization
accuracy and still be able to obtain safe robot paths. Details
about object and user detection can be found elsewhere [9]–
[12]. We then show how navigation is integrated for the
service robot tasks based on the ROS SMACH architecture
for creating complex robot behaviour [13]. Finally we present
results of operation in different environments.

The paper proceeds as follows: The next section reviews
related work. Section II lists and discusses the partially
conflicting requirements on the sensor setup for home robots.
Section III presents in more detail the proposed sensor setup.
Section IV presents the solutions for navigating based on this
camera setup and Section V embeds navigation in the robots
behaviour. Finally, Section VI evaluates the RGB-D setup in
different home-like settings.

A. Related Work

Safe and reliable autonomous navigation in home envi-
ronments remains an open topic in mobile robotics. Narrow
areas are especially challenging. The standard solution for
2D mapping, localization and navigation uses one laser
scanner with 180◦ FOV mounted horizontally in front of
the robot, looking forward. This 2D approach has proved
an effective solution for mapping and localization in most
indoor environments, but it is limited with respect to obsta-
cle avoidance when the environment contains obstacles of
different heights. In that case, other solutions must be found
[14], [15].

Another option is to rely on RGB-D cameras. The RGB-D
sensor characteristics add new challenges. The large interest
is supported by the recent proposal for a Kinect Navigation
Challenge. The initiative was launched jointly by Microsoft
and Adept Mobile Robots. Also, a first dataset and bench-
mark to evaluate RGB-D based SLAM has been recently
published [16].

Several recent works have attempted to show whether
RGB-D sensors, in particular the Kinect Sensor by Microsoft,
could replace laser scanners [17], [18] and be used for
mobile robotics navigation [19]–[23]. Interesting technical
comparisons mainly focusing on the specifications and per-
formance of the sensors were presented in [17], [20]. The
standard settings of state-of-the-art implementations were
used without any explanations or adaptations. No sugges-
tions to improve the results were proposed or tested, even
when the outcome was not deemed satisfactory. Complete
navigation tasks with state-of-the art implementations were
not addressed. Novel methods and algorithms especially
designed for RGB-D sensors were also developed [22], [23].
An interesting approach applies a wall extraction method for

localization and an incremental path-finding algorithm that
avoids full re-planning for obstacle avoidance, specifically
mentioning some particular challenges of real world home
environments [22]. Convincing results were obtained with
this approach, although the validation was limited to a single
navigation task from one predefined point to another. Another
interesting solution is based on plane detection filtering
and matching with 2D lines for localization, while all the
projected points are used for obstacle avoidance by obtaining
open path lengths for different angular directions [23]. The
results of this localization method were more accurate and
robust than those of approaches simulating the readings of
a laser scanner. Long run trials of the complete navigation
system were succesfully performed. Other researchers have
analyzed the possibility of using a Kinect sensor for obstacle
avoidance [24], particularly pointing out and addressing
problems related to the existence of a blind detection area.
The reliability for detecting thin obstacles was also evaluated.

Regarding a solution for navigation based on full 3D
methods, we summarise that they are computationally expen-
sive and not suitable to be combined with parallel tasks for
affordable home robots. Furthermore, standard path planning
algorithms are not designed or implemented to work with 3D
data. The rest of the paper presents practical solutions for a
working system based on RGB-D sensor data using available
open source implementations in ROS.

II. REQUIREMENTS FOR HOME SERVICE
ROBOTS

The challenge of service robots for homes is that a large
spectrum of functions is desired [25]. Extensive studies
enumerate plenty of tasks [26] also including the use of
state-of-the-art AAL features [27], [28]. With these tasks in
mind, we focus on the requirements which define the sensor
configuration.

• Call robot. The robot should be able to come to a
given place when called by the user. This task requires
localization and obstacle avoidance for safe navigation.

• Find user. The robot should be able to look for the
user. This task requires localization, obstacle avoidance
for safe navigation and person detection capabilities.

• Bring object. The robot should be able to bring objects
to the user. Besides localization and safe navigation, this
task implies being able to detect and pick up objects.

• Multimodal interaction. The robot should support
multimodal human-robot interaction (HRI). For this
task, gesture recognition capabilities are desired so that
the user can communicate with the robot even if the
robot is out of reach and speaking is not a good option,
as long as the user is in the field of view.

The basic tasks subsume further functions. From the user-
relevant tasks, we extract technical requirements for the
perception system of the robot:

• 2D localization and mapping. Ideally the sensor(s)
should observe large, planar, static structures that are
at a maximum distance from the robot. A full 3D



reconstruction may be possible but time consuming.
Using available implementations for 2D data requiring
only horizontal depth data is another option.

• Obstacle avoidance for safe navigation. The environ-
ment up to the height of the robot should be observed to
detect obstacles such as table edges. For safety reasons,
the traversable floor area must be detected.

• Object detection and pick up. User studies [11],
[26] indicate that objects on the floor are of utmost
importance. Convenience asks for objects at medium
height, while in particular cases grasping objects from
higher than the typical head height might be needed.
Starting with the critical cases, the requirement is to
cover heights from the floor up to 90 cm (kitchen
counters). This includes tables of all heights as well as
lower shelves. Object detection requires RGB-D data.
The sensor should look down at tables, which allows for
table plane detection to simplify object segmentation.
Furthermore, side views of objects may be degenerated
and render recognition difficult.

• Person detection and gesture recognition. RGB-D
cameras are becoming the standard for these functions,
e.g., [12], [29] and there are open source implementa-
tions available in ROS. The mounting height can range
from 0.6m to 1.8m, and the optical axis should be
approximately parallel to the ground plane so as to
detect standing/sitting persons as well as their gestures.

These requirements obviously bring about conflicts about
the sensor setup, including aspects such as where to place
the sensors in general, at which height and with which
orientation. One solution could be to have one static RGB-D
sensor for each required capability, which is hardly feasible
because of space, connectivity, and computing reasons. Al-
though RGB-D sensors are cheap, it is highly preferrable to
have a minimum setup configuration.

III. PROPOSED SENSOR SETUP
In view of the requirements presented above, the selected

solution was to mount two RGB-D sensors on the robot
(Fig. 1).

1) Bottom Camera, fixed: a ground-parallel RGB-D bot-
tom camera at a height of about 35 cm is used for
mapping and localization. This height was selected
because it makes it easier to detect walls and static
furniture despite the presence of chairs and tables.
At the same time, it allows for the detection of low
static elements such as low shelves or sofas, which
can improve the localization behavior in wide rooms.
The ASUS Xtion Pro Live RGB-D sensor was selected
because of its slightly larger FOV (58◦H x 45◦V vs
57◦H x 43◦V of the Kinect).

2) Pan/tilt Top Camera: an RGB-D camera is mounted on
a pan-tilt unit at a height of about 120 cm. This camera
is used for object detection, human-robot interaction
and obstacle avoidance. Although the pan-tilt unit
allows for continuous variations of the pan and tilt
angles, in our initial setup two fixed angles up and

down proved to be sufficient. When looking forward,
with the optical axis parallel to the ground, the depth
data are used for human detection and tracking and
for detecting and grasping objects on table tops. When
looking forward and down (tilt angle about 60◦), the
depth data are used for close-range obstacle detection
during navigation. Additionally, when looking down
and left, forward or right, the depth data are used for
detecting objects on the floor. Since the robot has an
arm on its right side, looking down and right is used
for object grasping from the floor and when learning
new objects.

IV. ADAPTING ROS NAVIGATION TO RGB-D
CAMERAS

The intention of providing a generic camera setup is
combined with the goal to provide a generic setup for
navigation. We build on existing solutions in ROS [30] and
the available navigation stack including:

• Mapping. The slam gmapping node is a ROS wrap-
per of the GMapping algorithm [31]. It creates occu-
pancy grid maps from laser and odometry data collected
by a mobile robot. A map server utility for saving and
accessing previously obtained maps is also provided.

• Localization. The amcl ROS node is an implementa-
tion of the adaptive (or KLD-sampling) Monte Carlo
localization [32] approach, which uses a particle filter
to track the pose of a robot against a known occupancy
grid map.

• Autonomous navigation. The move base ROS node
makes use of a global and a local planner to drive
the robot towards a given goal. The available global
planner is navfn, which operates on a costmap to find
a minimum cost plan from a start point to an end point
in a grid, applying Dijkstra’s algorithm [33]. The avail-
able local planner is a base local planner, which
provides implementations of the Trajectory Rollout [34]
and Dynamic Window [35] approaches to local robot
navigation on a plane.

The navigation experimental stack provides
other algorithms, but they are not in a mature enough state
to be used reliably, some specific functions are missing and
the documentation is scarce.

A. Data preprocessing

The first problem to overcome towards using the 2D
navigation tools available in ROS comes to properly con-
verting the provided depth data matrices to the expected
input format. The pointcloud to laserscan package
can be used for that purpose, but we implemented our own
nodes for the conversion in order to have more flexibility
and accuracy in the selection of distance measurements and
the segmentation of obstacles.

The 640x480 individual 2.5D data computed from the
depth images of the ground-parallel bottom RGB-D camera
are initially reduced to 640 individual virtual laser beams.
To do so, the range is obtained by estimating the vertical



structure for each of the 640 columns using a slice of the
2.5D data above and below the plane spanned by the cameras
optical axis and the central row of the depth image. Provided
that the RGB-D camera had produced valid depth informa-
tion within such a slice, the maximum distance within each
column is taken as a measurement for the virtual 2D laser
scan. The reason for taking the maximum distance is that
walls, the most adequate features for localization, are the
boundaries of indoor environments. The angle information
for each column is taken from a lookup table generated at
system start-up from the known geometry of the RGB-D
camera. In our tests we used a slice of 5 cm around the
virtual 2D scan plane. To be compatible with ROS, the 640
measurements are re-sampled into a scan with equal angle
increments (0.5 intervals were used).

To detect obstacles in front of the robot platform we use
the data from the tilted top camera and apply a segmentation
algorithm for the conversion into a virtual scan. We apply
an approach which is based on v-disparities [36], initially
developed for segmentation with stereo cameras. Fig. 2
shows an example of results. Details can be found in [37].
It is possible to ignore a rectangular area of the images so
as not to create obstacles that correspond to lower parts of
the robot base.

Fig. 2. Top: RGB scenes. Bottom: preprocessing for obstacle avoidance.
For each scene, from left to right and top to bottom: confidence map, relative
gradient values of the lower resolution disparity image with respect to the
vertical gradient of the line corresponding to the floor, points outside a
disparity value band around the floor disparity are labeled as obstacle points,
projection onto the floor plane, projection labeled and virtual 2D laser scan
obtained by raytracing the labeled grid.

B. Reasoning about the parameter configuration and solving
problems related to the blind area

The default parameter values used in the ROS navigation
stack are specifically provided for laser based systems. Since
RGB-D data present very different characteristics, a proper
selection of parameters is required.

The proposed sensor configuration allows the blind area in
front of the robot to be reduced, but not completely avoided
(see Fig. 1). This issue, together with the reduced FOV
for obstacle avoidance, the shorter maximum range and the
fact that the designed mobile platform is a non-holonomic
platform, are the most important points to consider in order to
find good parameter values to make the system work with the
provided input data. This task is definitely not easy -not even
with standard laser based systems- and many researchers and
ROS users have pointed it out before [38].

To begin with, by making the robot consider its orienta-
tion when following the global plan (heading scoring
parameter set to true), it rotates in the first place and
does not get so much separated from the global path when
starting to follow it. Depending on the followed trajectory,
this may or may not be helpful for avoiding collisions with
small undetected obstacles, considering the blind zone of
the sensors. Fig. 3 shows two examples of this situation.
In general, considering longer trajectories, it is very unlikely
that an obstacle lying closer to the direct route from one point
to another is not detected. Given the way the local planner
works, and the reduced accuracy of localization, we found
this mode of operation safer, especially in narrow spaces.

Fig. 3. In place rotations before moving towards a goal can reduce the risk
of collision in some cases, but not in others. The black circles represent the
blind zone and the blue lines represent the limits of previously observed
areas. The robot goes from A to B and then from B to C. The small red
areas are not detected by the sensors with the given trajectory, but they
could be covered by longer trajectories.

The weights were adjusted so that the global path is
followed accurately enough while still trying to reduce the
distance to the goal. Furthermore, the planning frequency
was increased because the plan needs to be modified when
a new obstacle is encountered, and there is less time, since
the maximum range of RGB-D sensors is not very large. A
compromise has to be found so as to avoid oscillations with
paths going through alternative sides of an obstacle.

The effects of modifying the simulation time for the
local planner were also analyzed. The main problem with
the approach of the local planner is that it does not allow
for combinations of motion primitives towards longer term
planning. If the simulation time is too short, the robot may
choose a command action that is the best for that instant but
may require higher manoeuvrability later. If the simulation
time is too large, single translational and rotational velocity
values for all the simulation period are not the best option,
especially if some obstacles are not detected. Finding a
satisfactory value for this simulation time solved problems
with oscillations in the motion without getting undesired
effects within different motion primitives.

Even with a suitable configuration of parameters and
settings, the ROS implementation presents problems if there
is a blind detection area. Real obstacles in the static map
can be erased and a selective memory is required to deal
with obstacles not represented in the static map which get
too close.



In the first place, the ray tracing method applied to clear
up the static map and hence achieve better performance
when the robot is slightly mislocalized could not be used
in a straight forward way. Due to the blind area in front
of the robot, real obstacles would be erased. This should
not be a problem if the obstacles are thick external walls
and the global planner is configured not to allow navigation
through unknown areas, but it is an issue when dealing
with partition walls and other kinds of obstacles inside the
environment. On the other hand, if the static map is not
cleared at all, localization errors can result in the planner
producing undesired paths, as shown in Fig. 4 left, where the
path goes closer to the left wall than expected. The proposed
alternative comes to adding a new cost map layer plug-in, in
the Hydro version of ROS. The cells in the static map which
are inside the blind area or beyond the limits defined by the
maximum range of the sensor should be copied to the new
layer. Ray tracing must be applied to the intermediate area
only. If the localization errors are too large, problems can
still be found, but this way, the resulting paths are closer to
the desired solution and only deviate in the blind area, as
shown in Fig. 4 right.

Fig. 4. Planning under slightly wrong localization circumstances. Left:
using both the static map and the detected obstacles. Right: applying the
proposed modification the static map outside the blind zone is deleted
by ray tracing and not considered by the planner, only the dashed lines
corresponding to the real world are taken into account. Note that there is
more free space for planning.

Besides keeping the static map within the blind zone for
safety reasons to avoid collisions when rotating, for instance,
it is also important to remember previously observed obsta-
cles close to the robot. With the standard system, when the
robot approaches an obstacle it suddenly disappears and the
path planner updates can make the robot crash. If all the
obstacles are remembered for long, dynamic elements no
longer present can make global planning harder or even not
possible. The proposed idea is again to modify the new layer
so that at every iteration the obstacles outside a given window
are erased by means of the resetMapOutsideWindow
function, while the window corresponding to the blind area
is preserved. The size of this window has to be precisely
defined, otherwise there is also a risk that a dynamic obstacle
coming too close may keep the robot blocked. Regarding the
local planner, the observation persistence parame-
ter is increased so that the obstacles are remembered for a
while. This is somewhat similar to the short-term memory

concept developed in [24]. In our setup, the RGB-D sensor
is used for localization, which hence is less reliable and may
cause some obstacles to get slightly enlarged sometimes. A
good choice of parameters is again very important. Similar
ideas were tested with ROS Fuerte.

C. Rooms and places

The 2D navigation system was extended to use the concept
of rooms, and places inside the rooms. This extension is
not related to the sensor modality and can be used by
any system. It facilitates the tasks to be carried out in the
home environment. Other researchers also pointed out the
importance of using intuitive map and place representations
[39], [40].

Once a metric map is built and saved, it is possible to open
it with a tool editor developed in order to add room labels
(see Fig. 5 for an example). The tool is based on the Qt
framework and it processes maps in the ROS format (pairs
of .pgm and .yaml files), but it is independent of ROS and
does not require ROS. The corners of a room are indicated
by mouse-clicking on the desired points, then the room must
be saved and an adequate name given by the user must be
entered into a dialogue box. If the user is not satisfied with
the room shape or the given name, it is possible to delete
the room and add it again, at any point of the room labelling
process. The geometry of the rooms does not have to be very
precise, what is important is that it contains all the places of
interest that the user wants to specify in a subsequent stage of
the initialization phase. One advantage of this manual process
is that spatial ambiguity is not a problem, since it is the user
who decides how to partition the environment. When the
result is acceptable, it can be saved to an xml-file to be used
later. Using this approach, the room annotation functionality
can be incorporated into the mapping process in a very easy
and convenient manner.

Fig. 5. Room labelling example.

After the defined rooms have been saved, places of interest
can be added to each room. To this end, the robot is
tele-operated to the selected places, while localization is
performed within the map. The robot is stopped at the places
of interest and a place label is given (published). The system
automatically recognizes the current room and then the place
name, along with its x-y position coordinates, is stored in the
list of available places for that room. The result is a hierarchy



of rooms and places inside each room. The recognition of
the current room is based on the crossing number algorithm
to detect whether a point lies inside a generic polygon.
Our implementation was inspired by the original article by
M. Shimrat [41] and by the pseudo code provided by D.
Eppstein [42], where we resolved inconsistencies and made
the method more generic. Consequently, the association of
places to rooms operates automatically. This functionality is
available by means of two ROS nodes, one for getting the
current room name and another one for adding the places
to the corresponding room in the xml file. A GUI version
was also developed and it allows a place type for the defined
place to be selected.

Navigation to the desired places is now possible. A parser
node uses the xml file previously created and converts places
names to poses to be used by the move base node for
autonomous navigation. All these new functionalities are
extremely easy to integrate and use.

V. IMPLEMENTATION OF HOME ROBOTIC TASKS
IN AMBIENT ASSISTED ENVIRONMENTS

The functionalities presented in Section II work as follows.
Navigation to places on demand. The user can select a

room and the name of a place, and the robot navigates to
that place. Wireless call buttons in fixed positions of the
AAL environment will be used to define the target place.
Pressing a call button just sends a message with the place
name corresponding to the id number of that button. This
activates autonomous navigation to that place.

Locate user. The robot will look for the user from all the
search positions defined for each room, employing a distance
criterion and previous knowledge about the last room where
the user was detected if available. This information can
be obtained from presence and activity sensors placed in
different rooms of the AAL environment. The functionality
was implemented by means of the ROS SMACH architecture
[13]. The state machine for this task is shown in Fig. 6.
Please note that the head camera is looking forward when in
the ROTATION state (user search) and downwards otherwise.
The initial user detection approach was described in [12].

Bring object. The user can ask the robot to bring a
previously learnt object. The predefined list of search po-
sitions is updated with likelihood values based on previous
findings. The top sensor is used for object recognition and
grasping. The description of the algorithms used for this
purpose is beyond the scope of this paper, but their main
ideas and evaluations were already published [10], [11]. The
implementation of this functionality is based on SMACH too.

Multimodal HRI. The gesture recognition techniques used
by the robot are based on the methods presented in [12].
Other ways to communicate with the robot are based on
speech recognition and touch screen commands.

VI. RESULTS

A priori specifications and requirements were derived from
a combination of the application needs and the limitations
resulting from the low cost system setup. The open space of

Fig. 6. State machine for the Locate User functionality

a room should be smaller than five meters. Access to narrow
corridors is limited, 90 cm are required for a rotation. If at a
given point, after several attempts, a new obstacle is blocking
the robot path, the robot will ask the user to remove it.

We measured that the average error of the virtual laser
scan with respect to a Hokuyo URG-04LX laser sensor is
below 1.25 cm within a range of 4 m. The algorithm was
set to update the 500 particles after the robot has moved at
least 0.25 m or turned at least 0.2 radians.

The results from our tests to find better parameter values
are presented in Table I. Table II contains a more detailed
analysis of how changing the parameters sim time and
path dis bias affects navigation through a narrow door-
way with quite a straight forward trajectory (see Fig. 7 left).
The Time per run is computed as the average value for the
tests in which no extra rotations were performed. A good
initial localization estimate for the same position was given



at the beginning of every run. By providing similar starting
and ending conditions and keeping the other parameters the
same, we tried to limit the influence of other factors.

TABLE I
PARAMETER VALUES

Parameter Value
heading scoring true

path distance bias 0.6
goal distance bias 0.8
planner frequency 5

sim time 2
observation persistence 5

TABLE II
ANALYSIS OF PARAMETERS

Parameter sim time path dis bias
Value 1 1.5 2 2.5 0.6 0.8

Success rate 9/10 9/10 10/10 10/10 10/10 10/10
Number of rotations 1.2 0.1 0.4 0.2 0.4 0.9

Time per run (s) 42 27 27 37 27 40

The proposed setup was tested in a couple of home-
like environments with a previous prototype of the Hobbit
robot (Fig.7). New tests and adaptations are currently being
carried out with the final prototype robot. The robot safely
navigated to predefined places in most cases, even if some
of them were quite close to obstacles such as a table or an
armchair. A summary of the results is presented in Table III.
These results are comparable to those obtained with other
more specific methods [24], but longer term tests will be
required. We could see that the localization results both in
terms of error and uncertainty can be notably improved by
means of in place rotations (Fig. 8), which should facilitate
recovery, as proposed in ROS. The Locate User functionality
was succesfully tested, although the user detection needs to
be better adjusted to the current settings. The Bring Object
functionality has been partially tested, but the grasping is not
completely integrated into a whole scenario and the object
recognition procedure is also being better adjusted.

Fig. 7. A previous prototype of the Hobbit robot (with the same sensor
configuration as described here) navigating between predefined places.

TABLE III
NAVIGATION BETWEEN PLACES. SUMMARY OF RESULTS.

Test Succes rate
Navigation between places not going through a door 20/20

Navigation between places going through a door 16/20

Fig. 9 shows how using the top RGB-D camera for
obstacle avoidance makes navigation safer. In Fig. 10 the
path for avoiding a close-by obstacle can be observed. It
was followed by the robot without risk of collision. Fig. 11
shows the robot picking up an object from the floor.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an affordable system for domestic
robotic tasks including navigation, using RGB-D sensors and

Fig. 8. Localization improvements after rotation. Top: initially acceptable
pose estimate with high uncertainty. Bottom: initially incorrect pose (note
that the laser data do not match the actual wall, there is an important ori-
entation error) with intermediate uncertainty. Left: before rotation. Middle:
after one 360◦ rotation. Right: after two consecutive 360◦ rotations. The
improvements are qualitatively substantial.

Fig. 9. Left: using only the bottom RGB-D sensor (green measurements)
resulted in the robot colliding with a table and losing localization. Right:
when the top RGB-D sensor (white measurements), was used for obstacle
avoidance the robot stopped and would not go through the table. The thin
yellow lines were added for visualization purposes, to show where the real
table approximately is.

the ROS framework. Improvements over existing solutions
and new specific functionalities were proposed and tested.
We reported the lessons learned and extensions made in the
development of the whole system.

The configuration of the sensors allows the blind detection
area in front of the robot to be reduced. We focus on avoiding
and detecting obstacles lying on the floor, which are the most
common obstacles in indoor environments and the ones that
cause a higher risk of falling down. Obstacles like the narrow
stick used in [24] are detected only when the robot gets
closer, but we think that this is a minor drawback. It is hard
to find such obstacles in domestic environments.

Despite the improvements introduced in order to adapt
ROS navigation to be used with RGB-D sensors, we have
finally decided to use Mira [43] navigation instead of ROS
navigation for the project. The navigation parameters were
already very well tuned for the new robotic platform and the
planning algorithms behavior is more robust.

In future work, we will continue the adaptation and testing
work with ROS Hydro and the new platform. Migration to
the new version of the ROS openni2 driver requires some
changes in the virtual laser for obstacle avoidance. More
improvements will be required in order to make navigation
in narrow spaces more reliable. Further experiments will be
conducted and new recovery behaviors may be needed. We
also plan to incorporate semantic mapping capabilities into
the system, so that relevant places in each room can be
recognized and added autonomously.



Fig. 10. Avoidance of a remembered close-by obstacle.

Fig. 11. The robot picking up objects from the floor.
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