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Abstract— This paper presents a novel approach to emptying
a basket filled with a pile of objects. Form, size, position,
orientation and constellation of the objects are unknown.
Additional challenges are to localize the basket and treat
it as an obstacle, and to cope with incomplete point cloud
data. There are three key contributions. First, we introduce
Height Accumulated Features (HAF) which provide an efficient
way of calculating grasp related feature values. The second
contribution is an extensible machine learning system for binary
classification of grasp hypotheses based on raw point cloud
data. Finally, a practical heuristic for selection of the most
robust grasp hypothesis is introduced. We evaluate our system
in experiments where a robot was required to autonomously
empty a basket with unknown objects on a pile. Despite the
challenging scenarios, our system succeeded each time.

I. INTRODUCTION

Grasping unknown objects is a fundamental necessity of
robot-world interaction. Domestic robots now and in future
times need the capability to manipulate novel objects in very
cluttered scenes. To the best of our knowledge we are the first
to present a fully automated system for emptying a basket by
grasping novel objects from a pile using vision alone. One
of the key issues in robotic grasping has been the lack of
availability of complete 3D visual data. Despite limited 2.5D
data (obtained from a single view in most setups), object
attributes like transparency, reflection, absence of texture,
material or color limit the quality of received data depending
on the method of perception.

Given complete 3D models of all objects in a scenario,
default grasp quality metrics like force or form closure
([1LI2],[3],[4]) and other grasp quality metrics ([5],[6])
have been implemented in simulation environments like
OpenRAVE/OpenGRASP [7]/[8] or Grasplt [9] for detecting
high quality grasps. There are several ways to handle these
knowledge gaps and gain full 3D models. Miller et al. [10]
model objects as sets of shape primitives, such as spheres,
cylinders, cones or boxes. Varadarajan and Vincze [11] use
the more general Super Quadric Fitting after object part
segmentation. The approach of Bohg et al. [12] is based
on the observation that many objects possess symmetries.
They use a mirroring technique to complete point clouds and
reconstruct a closed surface mesh. Rao et al. [13] also assume
symmetry for object completion. Wohlkinger [14] proposes
a system that covers automated model acquisition from the
web for object recognition and object classification. The
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Fig. 1: Scene is showing 4 infeasible grasps due to the nonexistence
of a kinematic solution. The basket is placed at an optimal position
for top grasps regarding kinematic solutions for our robot arm.

idea for grasping unknown objects is that if the underlying
database is large enough, the nearest model (metric based on
shape similarity of the visible part of an object) is sufficient
for detecting a suitable grasp.

In this paper we propose Height Accumulated Features
(HAF) to abstract shape data from very cluttered scenes in a
form that enables learning grasp hypotheses based on point
cloud data. The framework introduced by us has a number
of key benefits:

o No Segmentation Necessary: Segmentation is not only
a very hard problem, but it is an unsolvable problem
using vision alone. For instance, it is not possible to
decide from visual perception if two adjacent boxes
are glued together. Our approach has the full capability
to solve the complex problem of emptying a basket
with novel objects as standalone system. It can also
be seen as complementary approach for methods which
need segmented input e.g. for Superquadric fitting or
as a preprocessing module for object recognition by
separating one object from a heap of items.

o Integrated Path Planning: In the majority of recently
published grasping approaches such as [11], grasp plan-
ning and path planning are done independently. Grasp
points and grasp approach directions are calculated first,
computation of inverse kinematic solutions and obstacle
avoidance for path planning are done later.

— Our machine learning approach is trained to only
pick grasp hypotheses which results in collision
free local paths for the manipulator used and the



given approach vector.

— A second benefit is the possibility to restrict chosen
grasp hypotheses by selection of an appropriate
approach vector direction - for grasping out of a
box, grasps from the side will be of no use.

Due to the limited workspace for practical work with
fixed robot arms (see Fig.1), these enhancements for
pre-selection of grasps simplify the work of the inverse
kinematic solver and improve the computing time for
the final grasp configuration immensely.

e Use Known Shape Data Only: Although a complete and
correct reconstruction of objects is clearly an advantage
for calculation of grasps, the state-of-the-art algorithms
do not work reliably enough for a complex scene
like the one dealt with in this paper. Our approach
concentrates on grasps on perceived surfaces where the
manipulator can approach the object without the need
to estimate the surface of the object facing away from
the camera.

The next section discusses related work. Section III intro-
duces the Height Accumulated Features and gives a detailed
overview of our learning framework, methods for exploring
the relevant grasp search space, and the heuristic for choosing
the best grasp hypothesis out of many. In Section IV, we
describe the working of the system modules, together with
the hardware setup and present results. Finally, we give a
short conclusion.

II. RELATED WORK

Among popular approaches, Klingbeil et al. [15] closely
relate to the work presented in this paper. Klingbeil et al.
propose an approach for grasp selection for a two finger
end-effector to autonomously grasp unknown objects based
on raw depth data. Their approach is based on finding the
place where the manipulator shape fits best and does not
require neither given object models nor a learning phase.
Furthermore, they have integrated their grasping methods to
create an autonomous checkout robot by reading barcodes.
Saxena ([16],[17]) used supervised learning with local patch-
based image and depth features for grasping novel objects in
cluttered environments. Since this approach only identifies
a single grasp point - that is, the 3D position (and 3D
orientation), it is best suited for pinch-type grasps on items
with thin edges. Jiang et al. [18] used an approach with many
types of rectangular features for learning grasps, including
one based on the comparison of depth values. Another
approach based on SVM learning has been used by Pelossof
et al. [19]. Berenson et al. [20] also considered grasping
in cluttered scenes but with known 3D models. Calli et
al. [21] propose a grasping algorithm which uses curvature
information obtained from the silhouette of unknown objects.
Pitzer et al. [22] showed that human interaction for deciding
where to segment and hence where to grasp surprisingly
enhances grasp performance for known objects in complex
scenes.

III. APPROACH

Our approach is based on the observation that for grasping
from top, parts of a manipulator have to enclose an object
and hence go further down than the top height of the object.
There must be space around the object where the manipulator
fingers can be placed. Our idea is to define small regions
and compare there average heights using discretized point
cloud data. The height differences gives an abstraction of
the objects shape that enables classifier training (supervised
learning) if grasping would succeed for a given constellation.
This classifier is used to explore the complete relevant
grasp space. A weighting system evaluates all found grasps,
preferring grasps which are centered in an area of potentially
successful grasps.

Algorithm 1 shows the pseudo code of the empty the
basket scenario. In the next subsection we are introducing
the Height Accumulated Features (Algorithm 1: line 9) on
which our learning module (III-B, Algorithm 1: line 10) is
based. In the next subsection we present a heuristic for
selecting one grasp hypothesis from many possible ones
(Algorithm 1: line 11). Subsection III-D shows the working
of our binary classifier for grasps with fixed hand roll and
approach vector, thereby exploring the whole relevant grasp
space (pseudo code Algorithm1 lines 5-7). Finally, III-E
describes methods for fine calculation of the grasps using
the OpenRAVE simulation environment (Algorithm 1: line
17).

Algorithm 1 Pseudo Code for Empty the Basket

Require: Raw depth data of scene
Ensure: The basket gets emptied

1: pcBox < GetBoxAndObjects PointCloudDatal()

2: pc < Detect AndDelete Box(pcBozx)

3: while basket not empty do

4. GH =10 +GraspHypotheses

5 for ot = 0; air < maxTilt; apr += tiltStep do
6: for Bron = 0; Brou < 2m; Brou += rollStep do
7:
8

heightGrid < MakeH eightGrid(pc)
: accumHeightGrid <— Accum/(heightGrid)
9: HAF <« CalcHAF (accumH eightGrid)

10 graspGrid <— SV MClassifier(HAF)

11: GH < AppendTopGrasps(GH, graspGrid)
12: end for

13:  end for

14:  success < false
15:  while success == false and GH # ) do

16: topGH < GetAndRemoveTopGH(GH))
17: topGrasp < FineCalculation(topGH)
18: success < TryEzecuteTopGrasp(topGrasp)

19:  end while

20:  pcBox + GetBoxAndObjectsPointCloudDatal()
21:  pc « DetectAndDelete Box(pcBox)

22: end while

A. Height Accumulated Features

Inspired by Haar-like features from [23], we developed
Height Accumulated Features fitting for grasp manipulation.
Here, we illustrate our idea on a simple example of a box
shaped object (Fig. 3(a)). Fig. 3(b) shows the extracted



Fig. 2: Even for such scenarios the basket orientation and pose
detection has to work robustly. Beside that, the basket as additional
circumfluent obstacle reduces the number of possible grasp points
and approach directions and is responsible for occlusions of lower
object parts near the border.

point cloud of the box. For our approach we now calculate
a height grid H of a 14cm x l4cm scene part which is
appropriate for the used manipulator. For different sized
manipulators, the point cloud would be scaled accordingly to
the manipulator size (if needed x- and y-axes independently)
as a preprocessing step, giving the opportunity to use smaller
or bigger manipulators with only minor changes of the
system. Every cell in Fig. 3(c) shows the highest z-value
(height from base of the table top surface) of the discretized
point cloud displayed as height bars.

(a) Tea Box (b) Point Cloud (c) Height Grid H

Fig. 3: Preprocessing steps for HAF

(c) 4 regions

(a) 2 regions (b) 3 regions

Fig. 4: Examples of HA-Features with 2 overlapping, 3 disjunct
and 4 overlapping regions

Height Accumulated Features are defined in a fashion
similar to Haar Basis functions from [24]. Fig. 4(a) shows
an example of one HAF feature. We have defined two
overlapping rectangular regions R; (red+green cells) and
Rs (green) on the height grid H. All height grid values of

each region R; are summed up. These region sums r; are
individually weighted by w; and then summed up. Regions
R; and weights w; are dependent from the HA-Feature. So
the j** HA-Feature value f; is calculated by

nrRegions;
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One HA-Feature is defined by 2-4 rectangular regions (and
region weights), used in (1) to calculate one HA-Feature
value. The HA-Feature vector f is the sequence of HAF
values:

f:(f17f27~-~7fn'rFeatures) 3)

For the choosen example with two overlapping regions the
weights are choosen such that an intuitive interpretation of
one feature value f; is possible and as follows. f; indicates
if the center of the height grid is a good position for a grasp
with approach vector perpendicular to the grid plane:

f; < 0 green region in average higher (good)
f; > 0 red region in average higher )
f; = 0 average region height is equal

35,000 features were randomly selected from about
350,000 automatically generated features using 2 rectangular
regions with the only restrictions that the first region includes
the center of the grid and the smaller second region is
completely inside the first region. For these 35,000 features
the weighting is done s.t. (4) holds. We added 500 manually
created features with 2-4 rectangular regions. Examples for
HA-Features with three and four regions can be seen in Fig.
4(b) and Fig. 4(c). For the latter 500 features weighting
was perturbed to diversify the features and enhance the
shape descriptive power of our system. Using F-score feature
selection technique with SVM learning from [25], the 300
most characteristic features were chosen for the classification
task.

Of significant importance to our system is the represen-
tation of height grids. To expedite computation, we use
accumulated height values for the given scene. This principle
was first introduced as summed area tables in [26] for texture
mapping in computer graphics and was very successfully
renamed to integral images by [23] in the vision community.

Instead of an initial height grid H we calculate an accumu-
lated height grid AH once (the terminology emphasizes the
suitability of the feature for height related representation)
where each location z,y of AH contains the height sum
above and to the left of x,y in the grid.

AH(z,y)= > H(.y) 5)
z'<z,y'<y
Using height accumulated rectangular regions, each region

sum can be computed with four or less array references, see
Fig. 5.
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Fig. 5: To calculate the accumulated heights of region A a single
AH reference is needed: AH(A) = AH(x,y), Area D requires four:
AH(D) = AH(x2,y2) — AH(x2,y) — AH(z,y2) + AH(z,y)

B. Learning Approach — SVM

For learning good grasps Support Vector Machines with
radial basis function (RBF) kernel were used based on the
implementation described by [27]. The SVM was trained to
classify grasp points using the HAF vectors. Fig. 6 illustrates
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Fig. 6: For grasp classification it is learned (supervised learning)
if a hand movement in approach direction (black arrow) with
subsequent closing of the fingers would lead to a stable grasp

the actual classification task. For a manipulator with finger
tips aligned to the world x-axis (i.e. for opened hand the
line between thumb tip and forefinger tip is parallel to
the x-axis) and given hand approach vector (black arrow
in picture) parallel to the vertical world coordinate z-axis,
a manual evaluation by a human observer is done if the
hand movement along the approach vector with subsequent
closing of fingers would lead to a successful grasp (which
we then refer as 'good grasp constellation’). For training
purposes we manually gathered point cloud data for 450
scenes representing good grasp constellations and 250 for
bad ones. Using techniques like mirroring about x-,y- xy-
axis, cutting point cloud heights or inverting heights for
getting negative examples from positive ones, 8300 positive
and 12800 negative training examples were generated. The
enormous descriptive power of HAF is evident from the high
success rates on a series of test data sets: 99.2%-100%.
For the test scene with a basket B, we decide for each inte-
ger coordinate pair (x, y) inside the basket if this x,y-position
would fit for the center of a top grasp with predefined roll
angle of manipulator. A typical grasp classification outcome

for the box example (Fig. 3(a)) is shown in Fig. 7 where the
green area on the left side symbolizes good grasp positions.

Grasp evaluation

by applying v(r.c) on
grasp classification
grid

Fig. 7: Grasping Classification Grid GCG(center,left): green iden-
tifies spots where a grasp would be successful. The height of the
green bars on the right, symbolizes the evaluation value received
by applying the weight function from (6).

C. Heuristic for Grasp Selection

For selecting the most promising grasp point we developed
a simple heuristic. For simple grasp scenarios like the box
scenario but also for far more complex constellations the
grasp classifier from III-B often delivers not only single grasp
points, but whole areas where grasping would be successful
(see green area on the left in Fig. 7). Obviously in most cases
it is advantageous to take a grasp point which is centered in
an area where grasping would be successful, e.g. for a more
balanced weight distribution and hence a more stable grasp.
We developed a weighting system for selecting grasp points
out of many possible which is highly valuable for practice.
For each identified grasp in our grasp classification grid GCG
we weight the location considering adjacent grasps by the
following evaluation function

U(T, C) = Z Igrasp(l'v y) : wr,c(xa y) (6)

x,yeN

where r, ¢ are indicating the actual row and column of the
grasp location. [ is the indicator function for a grasp point:

Igrasp(x7 y) = {

and w, . is the weighting function with values displayed in
Table I with respect to one grasp hypothesis GH.

1 if grasp at location (X,y)

0 if no grasp at location (x,y)

112 3 2|1

213 4 312
1{1(3|4|GH |4 |3|1]1

213 4 312

112 3 2|1

TABLE I: Weighting values for evaluation of grasp hypothesis GH



D. Exploring Grasp Space

By now we have a classifier for top grasps with one hand
orientation (hand roll). Our technique to explore the whole
relevant grasp space is as follows.

1) Roll: To get grasps for different hand rolls S, i.e.
different angles for manipulator rotations about the ma-
nipulators approach direction, we rotate the initial point
cloud iteratively (by rollStep = 15 degrees) about the
vertical z-axis up to 180 degrees, make a new accumulated
height grid and start the HAF based grasp point detection
on this data. After selection of the top grasp points for
the rotated scene, grasp points where transformed to the
original world coordinate system. By use of a roll angle
range [3 — rollStep/2,8 + rollStep/2] in the simulation
environment and testing with manipulator rotation 5 and
B + 180° simultaneously, we achieve a sound exploration
of all rolls.

2) Tilt: In order to widen the domain of grasps from
grasps with vertical approach direction to grasps with tilted
approach direction, we transform the point cloud analog the
roll calculation with iltStep = 20°. After detection of good
grasp points on this data, the transform of grasp points and
tilted approach vectors is inverted and we get even grasps
from side direction. Due to the camera view and the basket
as grasping obstacle we prefer grasps with vertical approach
direction. Additionally for these grasps the search for inverse
kinematic solutions do not fail so often. Kinematic solutions
often do not exist for grasps with defined approach vectors
and fixed roll, see Fig. 1.

E. Getting actual Grasp Points using OpenRAVE

Using the heuristic from Section III-C we take the best
evaluated grasp hypothesis from all roll-tilt combinations and
use OpenRAVE for grasp and path planning. OpenRAVE
tries to approach the object mesh using the calculated ap-
proach vector and manipulator roll angle until a collision
occurs. Than it sets back the manipulator by a standoff value
which is dependent from the object position: if a standoff
value of 1mm leads to a collision of the gripper fingers
with the basket, the standoff is increased until the closing
fingers do not collide with the basket anymore. Then the
actual grasp points, i.e. contact points of fingers with object,
are calculated. From the resulting hand position OpenRAVE
calculates the manipulator position 7cm away and searches
for a collision free path to place the manipulator there. For
the last 7cm to the object OpenRAVE calculates a straight
path to the object if one exists. To make the system more
flexible the calculated approach vector and manipulator roll
angle are varied, currently by 10 resp. £7.5 degrees, to
overcome unsolvable situations like the non existence of a
kinematic solution.

IV. EXPERIMENTS

We demonstrate the capability of our approach by grasping
objects from a basket. Tests are done for ten different
scenarios (Fig. 8(a)-8(e)). To the best knowledge of the

authors we are the first to present an automatic system for
grasping from piles of unknown objects in a basket.

A. Test Setup

For grasp execution we use a Schunk 7-DOF robot arm
with Otto Bock hand prosthesis SensorHand Speed. Per-
ception is done using a Microsoft Kinect camera with a
PrimeSense sensor. Optionally a second camera can be used.
Our approach is aimed to work with input data from one top
view only. Since more data from a second camera is useful
for path planning, a second camera was used for testing
purposes.

ROS (Robot Operating System, www.ros.org) is used for
module communication. Point cloud manipulations are done
with PCL (Point Cloud Library, www.pointclouds.org).

B. Results

Table II shows the results for the ten trials to emptying
the basket. In all cases the basket was successfully emptied
without any user interaction after placing the basket and start-
ing the system. Five out of ten times the pile was resolved
without a single grasp failure. In the current implementation
2-3 seconds are needed for grasp calculation and about one
second for grasp and path planning with OpenRAVE.

Fig. 9: Objects used for test runs

Run | Objects Removed | Basket Emptied | Grasp Failures
1 /7 yes 0
2 /7 yes 9
3 7/7 yes 0
4 7/7 yes 2
5 /7 yes 0
6 /7 yes 0
7 /7 yes 2
8 /7 yes 0
9 71 yes 7
10 777 yes 2

Sum 70/70 10/10 22

TABLE II: Empty the basket results for all trials

Table III gives a detailed overview of grasp failures per
trial and object. Regarding only first tries to grasp an object
our approach succeeded in 61 out of 70 cases.



(b) Test Run 7

(a) Test Run 1

(c) Test Run 8

(d) Test Run 9 (e) Test Run 10

Fig. 8: Examples of test scenarios for empty the basket

Obj\Run [ 1 [2[3[4[5]6[7]8[]9] 10 [ Sum
Ball -l-1010]0]O0]-1]-1]15]0 511
Bowl ol-1-1-1-1-1-1-107]- 0/2
Car -l -1-1-1-1-1-1-107T1 1/3
Cereal 01 - 0]10|0]- - - - - 0/4
Cube -0 -1-1-1-1-1-1-1-+ 0/1
CubeFoam | - 01 - - - - - 0] - - 0/2
Cuboid ojojojojofo|2]0]|T1]- 3/12
CuboidF. -l -1-1-1-1-101]-1-1- 0/1
CylindertE. | - [ - [ - |- ]-|-]10[0]-1]0 0/3
EdgeF. -l-1-1-1-1-10]01]-1]- 0/2
Elephant 210(0lO0|O|O]O|T1]O 3/13
Milk T1-121-1-1-1-1-1-+ 9/11
Pig -l-1-1-1-10]-1]1-1071]0 0/3
Plasticine ojojo|lo|O|O]|-1]-1]- 1 1/8
SoftPads o|-]o0oflojoOoflO]O]O]|-]- 077
DrinkBox ol-1-1-10-1-1-1-1-+- 0/2
Whey -10]O0|-]-10]0]0]O 077
Sum 0(9/0 (2|00 |2]0|7]2 22/92

TABLE III: Grasp failures per object for 10 trials. F. = Foam. Entry
of last column is number of failures divided by number of tries.

Table IV shows a grasp error analysis. Three main issues
were identified causing grasp failures.

« Insufficient point cloud data leads to bad grasp hypothe-
ses: on the milk package the brand name was covered
by black tape for TV recording. The sensor delivered no
data for the taped area. Taking into account the object
position adjacent to another object, the resulting grasp
points looked reasonable in the simulation environment,
but failed in the real world seven times in a row. (Fig.
10). Each time the milk package was moved a bit, until
the hard constellation was cleared and the milk package
separated a bit from the adjacent object. Stable grasp
points could than be found despite the misleading input
data.

o Path planning was two times the reason for grasp
failures. In both cases the arm stopped in simulation
before it reached the expected position. This problem is
related to finding kinematic solutions and needs further
investigation.

o The HAF learning approach identified grasp points that
lead to unstable grasps. Consequently, objects slipped
out of the manipulator’s fingers. This happens if objects
have no obvious grasp points, e.g., when object top
surfaces have the same height and touch each other.
From all 22 failed grasps calculated there was none
where already in simulation it was obvious for human
observer, that the grasp can’t succeed. However, in all
cases the grasp trial touches at least one object, resulting

in perturbing these constellations and thus creating a
situation such that autonomous emptying proceeds.

Note that out of 22 failed grasps, 18 happened when only
1-2 objects where left in the basket. Particularly two hard
constellations with seven and four grasp failures in a row
were responsible for that, but it shows that our weighting
system is capable to decide which are simple grasps to exe-
cute first. It also shows that the basket brings a complication
which should not be underestimated, since most of these 18
grasp failures were related to objects adjacent to the basket
border. It also reveals potentials for enhancements of the
HAF learning system. To avoid obstacles (i.e. basket boarders
or currently not grasped objects), the system chooses grasp
points near the edges of an object, which can result in objects
slipping out of the manipulator’s fingers.

Fig. 10: Unstable grasp points due to insufficient data
1) misleading hole in data mesh 2) grasp points and approach
direction 3) grasp execution in simulation

Object
Milk
Ball
Elephant
Milk
Cuboid
Ball
Cuboid
Elephant
Car
Plasticine
Sum

Failures | Data | PP | HAF

=
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X
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=
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= =| = =] = o] o] rof &

>

N
N

TABLE IV: Analysis for grasp failures per object and test run.
Failures are caused by insufficient point cloud data (Data), wrong
path planning (PP) or unstable grasp points (HAF)

V. CONCLUSION

In this paper, we proposed Height Accumulated Features,
a new method to abstract shape information from clut-
tered scenes to enable learning of grasp hypotheses. We
explained a method to explore the relevant grasp space
using a trained SVM classifier. A practical weighting system
enhances the robustness of calculated grasps. The reliability
and robustness of our system was shown by a test series,



emptying a basket with a pile of unknown objects fully
autonomous. The complexity of tested scenes is beyond
all comparable test cases the authors are aware of. Videos
at www.youtube.com/user/emptythebasket demonstrate our
results on evidently arbitrary piles with even more than 7
objects uncut and a higher success rate as in Section IV-B.

Beside a highly efficient way of calculating HA-Features
and the avoidance of segmentation, our system has the benefit
to be extensible. The use of other features additional to HAF
can improve results, e.g. by taking into account detected
(side) faces to maximize grasp stability or profit from the
additional data the second camera view delivers.
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