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Hobbit, a care robot supporting independent living
at home: First prototype and lessons learned

David Fischinger1, Peter Einramhof1, Konstantionos Papoutsakis2, Walter Wohlkinger1, Peter Mayer3, Paul
Panek3, Stefan Hofmann5, Tobias Koertner4, Astrid Weiss1, Antonis Argyros2, and Markus Vincze1

Abstract—One option to address the challenge of demographic
transition is to build robots that enable aging in place. Falling
has been identified as the most relevant factor to cause a move
to a care facility. The Hobbit project combines research from
robotics, gerontology, and human-robot interaction to develop a
care robot which is capable of fall prevention and detection as
well as emergency detection and handling. Moreover, to enable
daily interaction with the robot, other functions are added,
such as bringing objects, offering reminders, and entertainment.
The interaction with the user is based on a multimodal user
interface including automatic speech recognition, text-to-speech,
gesture recognition, and a graphical touch-based user interface.
We performed controlled laboratory user studies with a total of
49 participants (aged 70 plus) in three EU countries (Austria,
Greece, and Sweden). The collected user responses on the
usability, acceptance, and affordability of the robot demonstrated
a positive reception of the robot from its target user group.
This article describes the principles and system components
for navigation and manipulation in domestic environments, the
interaction paradigm and its implementation in a multimodal
user interface, the core robot tasks, as well as the results from
the user studies, which are also reflected in terms of lessons we
learned and we believe are useful to fellow researchers.

I. INTRODUCTION

Several socially assistive robots for caring of the aging
population in the domestic context have already been devel-
oped as research platforms (e.g. KSERA [1], DOMEO [2],
Cogniron [3], Companionable [4], SRS [5], Care-O-Bot [6],
Accompany [7], HERB [8]). Despite the volume of research
and development efforts, hardly any robot really entered pri-
vate households besides vacuum cleaners and lawn mowers.
Developing robots for “real world environments” is a chal-
lenging endeavor. We have to consider constantly changing
environments we do not know in advance and natural inter-
action from the user, which is hard to predict and reactions
are hardly pre-programmable. For the development of a care
robot additional challenges arise. Many older adults want to
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Fig. 1. The “naked” Hobbit robot (left) and the Hobbit robot (prototype 1)
used for the first round of user trials (right) in Austria, Greece, and Sweden.

live independently at their homes as long as possible [9]. How-
ever, they themselves experience challenges in maintaining
their home and the need of assistive technology [10] can be
perceived as stigmatization [11].

Thus, our overall goal in the Hobbit project is to develop
an affordable and highly acceptable socially assistive robot
that supports older adults in staying independently at home as
long as possible. One of the biggest risks for an older adult
is falling and getting injured, which can cause a move to a
care facility. Hobbit should reduce that risk through preventing
and detecting falls (e.g. by picking up objects from the floor,
patrolling through the apartment, and by offering reminder
functionalities) and handling of emergency situations (e.g.
calling the ambulance, offering help with rising from the floor)
as a helping companion.

Socially appropriate behaviors as well as safe and robust
navigation and manipulation in the private homes of older
adults are to our conviction a prerequisite for getting Hobbit
accepted as a care robot. Our contribution is to develop Hobbit
along the Mutual Care paradigm [12], an interdisciplinary
user-driven design approach based on the sociological helper
theory [13]. The idea is that the user and the robot take care of
each other. In other words, Hobbit should encourage the older
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Fig. 2. Platform with 5-DOF IGUS Robolink Arm and Fin Ray Gripper.

adult also to care and help the imperfect robot, expecting that
it is easier to accept assistance from a robot if the user can also
assist the machine (which subsequently should also reduce the
stigmatization of the technology).

In this article we present results from the development of the
first HOBBIT robot prototype (subsequently called PT1, see
Fig. 1) and the first set of user trials in a controlled laboratory
setting in order to explore the reception of Hobbit from its
target user group. Section II describes the overall system,
including the mobile platform, the sensor system, the arm and
gripper, and the multimodal user interface. The components
are described in section III expanding on navigation, human
detection & tracking, gesture recognition, grasping, and object
learning & recognition. Next, the robot tasks are presented in
detail in section IV followed by a description of the user study
and its results on usability, acceptance, and affordability from
the perspective of potential end users. Throughout the article
lessons learned from the PT1 development are presented for
all sub domains and a summary and conclusion is provided in
section VI.

II. SYSTEM AND HARDWARE

A. Platform

The lower part of the Hobbit system is a mobile platform
(see Fig. 2) with differential drive kinematics. It has a circular
cross-section with a diameter of about 45cm. This combination
allows the robot to turn on the spot within its footprint, which
is important when navigating in narrow and cluttered domestic
environments. The platform houses the batteries (24V, 18Ah)
that power all electrical components of the robot and currently
allow for an average autonomy time of three hours. An
onboard PC (“XPC”) runs the high-level control software of
the robot. An additional controller board provides the low-
level motion control for the platform, which can execute
translational and rotational speed commands as well as fine
positioning commands.

Lessons learned: Regarding the hardware design of the mo-
bile platform it was most challenging to harmonize technical
requirements, user requirements, and the goal of a low cost
robot. An example is the user requirement for a small robot:
Clearly a care robot should not be too big in order not to
be threatening for a sitting older adult and, moreover, the
domestic environment also poses restrictions, such as narrow
hallways and doorways. Subsequently, the limitations in size
(PT1 user studies revealed that the maximum size should be
130cm in height) make it difficult to place sensors and also
the arm in a way that objects on table tops or shelves can be
detected, reached, and respectively grasped.

Another aspect is the power management to facilitate not
only long autonomy times of the robot but also safe operation.
The state of the batteries needs to be tracked to know how
much autonomy time is left to prevent the batteries from
failing and the robot endangering the user (e.g. by blocking the
user’s way or not being able to execute a complete emergency
handling scenario).

B. Sensor System

For being able to move safely and in a meaningful way
through its environment and to interact with it, Hobbit requires
an appropriate perception system for the following tasks:

• Map building and self-localization,
• Safe navigation (obstacle detection and avoidance),
• Human-robot interaction (user and gesture detection),
• Object detection and subsequent grasping.
For map building and self-localization seeing larger vertical

planar structures such as walls or the faces of closets that are
further away is desired. The “classical” approach is to mount a
2D laser range finder in the front of the robot that is scanning
parallel to the floor. Since such laser scanners are currently
still quite expensive, a more cost-effective solution is to use a
depth camera facing parallel to the ground instead.

Safe navigation in domestic environments requires detecting
obstacles up to the robot’s height, and holes such as stairs
leading downwards. A depth camera - when facing downwards
- can be used to cover the space directly in front of the
mobile platform and also left and right of it. Furthermore,
some auxiliary range sensors need to cover the back of the
robot to detect obstacles when moving backwards.

For human-robot interaction a Microsoft Kinect or ASUS
Xtion Pro Live RGB-D camera is required to detect the user
and to allow gestures as input modality. This hardware selec-
tion is based on technical requirements, user requirements, and
the need for a low-cost solution. The recommended mounting
height ranges from 60cm to 180cm, and the optical axis should
be approximately parallel to the ground plane for detecting
standing persons as well as their gestures.

Object detection requires seeing objects at heights of up to
90cm (kitchen counter) and also on the ground. Table tops of
“standard” tables (75cm) and of couch tables (40cm) as well
as lower shelves are covered by this height range, too. Object
detection requires RGB-D data. Support planes for target
objects (e.g. table tops) need to be viewed from above to see
at least part of the horizontal plane. An appropriate mounting
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height for an RGB-D camera was identified as around 130cm,
which coincides with the user-preferred maximum height of
the robot.

Taking the requirements listed above into account, the
sensor system of the PT1 Hobbit was set up the following:
In the front of the mobile platform, at a height of 40cm, there
is a floor-parallel depth camera (ASUS Xtion Pro, see Fig. 3
top left). In the “head” of the robot, on a pan-tilt unit mounted
at a height of 130cm, there is an RGB-D camera (Microsoft
Kinect, see Fig. 3 top right). The former camera is used for
self-localization, the latter is used for obstacle detection (see
Fig. 4), object detection, and grasping as well as human-
robot interaction, that is based on depth-based human body
observation and analysis (see Sec. III-B). To be more compact,
the Kinect was stripped off its original housing. An array of
eight infrared and eight ultrasound distance sensors in the back
of the platform allows for obstacle detection when backing up
(see Fig. 3 bottom left). Additionally, and as last resort, there
is one bumper in the back and another in the front of the
mobile platform (see Fig. 3 bottom right). Finally, incremental
encoders (odometry) on the two shafts of the drive motors
allow measuring motion of the 20cm drive wheels with a
resolution of 70µm per encoder tick. The encoder information
serves as input to the speed control of the drive motors; it is
also the basis for fine positioning.

Fig. 3. The sensor setup of Hobbit: head RGB-D camera on a pan-tilt unit
(top left), floor-parallel body RGB-D camera (top right), sensor array in the
back (bottom left), and bumpers in the front and back (bottom right).

Lessons learned: For a socially assistive robot that should
autonomously work as a care-giver at home, it is of utmost
importance that the individual components run robustly and
are failure-tolerant, above all as a human is in the loop.
Considering a failure probability of 1% per day for each of
lets say 30 of the components, the robot would only run stable
a whole day with a probability of (1 − 0.01)30 equals 74%.
For a whole week this probability is 12%, and for 3 weeks,
the intended duration per user trial and user with the next
prototype, the probability results to 0.18%. One solution to
avoid a fast abrasion of hardware (which can subsequently

Fig. 4. Field of view of the top RGB-D camera when tilted downwards for
obstacle detection.

lead to system failures) was considered for the design of the
“head camera” of Hobbit. For PT1 we used a spring to relieve
servos that were under constant load. The head design for the
next prototype will enable the servos to move the head with
minimum moment based on an improved mechanical design
balancing the weight of the head.

Furthermore, as with the overall size of the robot the optimal
positioning of the head camera posed a challenge due to
different requirements and constraints: (1) The more forward
the camera is positioned, the better for obstacle avoidance,
(2) the more the camera is in the back, the better for user
recognition, (3) the higher the camera is positioned, the better
for the overall perception, (4) the lower the camera is mounted,
the better is the resolution for grasping on the floor. For PT1
we decided in favor of option two, as a robust user recognition
lies in the focus for our care robot and failures in this area are
crucial in terms of acceptance.

C. Arm

The design goal for the arm was to use an affordable,
lightweight component with a human-like design. The so-
called “IGUS Robolink” [14] has a freely configurable arm
length and up to 5 degrees of freedom. Due to its modular
design it is used to fulfill these requirements. The arm has
a weight of 1.5kg, payload is 500 gram additionally to the
gripper, and each joint is driven by tendons. This has the
advantage that the motor drives can be mounted on the Hobbit
platform. The control of the arm system is done by the XPC
using TCP/IP commands which are received by the motor
controller.

Lessons learned: During the PT1 user studies it became
apparent that the arm reachability was too limited due to the
5 degrees of freedom. Especially when grasping objects from
the floor, the platform had to be positioned very accurately to
enable the arm to grasp the object, which was time-consuming
and boring for the user. Using a 6 degree of freedom arm for
the next prototype (PT2) will increase the reachability and the
speed of the grasping from floor process, due to the fact that
the fine positioning of the platform does not have to be as
accurate when grasping an object from floor.

D. Gripper

The manipulator consists of a gripping system based on
the FESTO “Fin Ray Effect” [15]. More specifically, the
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fingers mechanically wrap around any object shape without
additional actuation (see Fig. 5). The assembled fingers on the
manipulator can adjust themselves to the object by means of
the “Fin Ray Effect”. In combination with a simple open/close
mechanism, a variety of objects with different shapes (like
mugs, keys, pens, etc.) can be grasped. Due to the slip-proof
materials used for the fingers, it is possible to reliably grasp
objects.

Lessons learned: It turned out that buying a complete Fin
Ray gripper from the arm manufacturer is cheaper, easier
to access and more reliable than our self-developed and 3D
plotted gripper skeleton with Fin Ray fingers from Festo.

Fig. 5. Fin Ray Effect: gripper automatically wraps around object without
additional actuation

E. Multimodal User Interface

The multimodal user interface (MMUI) consists of a Graph-
ical User Interface (GUI, see Fig. 6) with touch, Automatic
Speech Recognition (ASR), Text to Speech (TTS), and Gesture
Recognition Interface (GRI). It provides web services (e.g.
weather, news, RSS feed), video phone service (based on
previous successful projects [16]), serious games, control of
a manipulator, access to an Ambient Assisted Living (AAL)
environment, and emergency call features.

Hobbit makes use of the MMUI to combine the advantages
of the various user interaction modalities. The touch screen
has strengths such as intuitiveness, reliability, and flexibility
for different persons and different sitting positions, but requires
a rather narrow distance between user and robot. ASR allows
a wider distance and can also be used when no free hands are
available, but it has the disadvantage of being influenced by
the ambient noise level, which may reduce recognition perfor-
mance significantly. GRI allows a wider distance between the
robot and user as well and also works in noisy environments,
but it only operates when the user is in the field of view of
the robot.

The touch screen is mounted in an approximately 45 degrees
angle in a slightly protruding position which is a design
compromise to avoid complex mechanics for the tilting. The
MMUI is mounted on a mechanical slider so that it can be
pulled towards the user for the most ergonomic position. Hob-
bit also provides a second small display on its “head” in order
to present facial expressions (emotions). Additionally, we aim
at presenting affective states of the robot towards the user, e.g.
by different ways of navigating the robot (approach trajectory

Fig. 6. Example of GUI used for Hobbit PT1.

and speed or moving the robot slowly when recharging of its
battery is needed).

The GUI is structured into several thematic menus with big
clearly spaced icons taking into account the needs of older
users and the operation from free standing. Immediate multi-
modal feedback (written text and text-to-speech) is provided
for every command activation, which can be done by any of
the input modalities.

The interaction with Hobbit is always initiated by calling
the robot, which can be done with three different input
modalities, which are differently suitable depending on the
distance between the user and Hobbit. It can be done either
by

• a wireless call button (far, from other rooms),
• ASR and GRI (2-3m),
• touchscreen (arm length).
The speaker-independent ASR and TTS are offered in four

languages: English, German, Swedish, and Greek. Contem-
porary ASR systems work well for different applications, as
long as the microphone is not moved far from the speaker’s
mouth. The latter case is called distant or far-field ASR and
shows a significant drop in performance, which is mainly due
to three different types of distortion [17]: (a) background noise
(b) echo and reverberation, and (c) other types of distortions,
e.g. room modes or the orientation of the speaker’s head.
For distant ASR currently no off-the-shelf solution exists, but
acceptable error rates can be achieved for distances up to
3m by careful tuning of the audio components and the ASR
engine [18].

Lessons learned: During the PT1 user studies it could be
observed that the round corner icons of the GUI (SOS and
clock in Fig. 6) were not always identified as buttons by
the users and therefore were changed to a rectangular design
comparable to that of the other buttons. In Fig. 7 the new icons
as designed for the next prototype are depicted, including icons
for new robot tasks that should also be integrated, such as
sending the robot to its charging station. Moreover, it turned
out that the option of extending the MMUI in a comfortable
ergonomic position for the user, was hardly ever used by
participants, even though they were reminded of this option.
As a consequence, the mounting of the touchscreen for the
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Fig. 7. Reworked GUI for the next Hobbit prototype.

next prototype will be changed to a fixed, protruding position.
Furthermore, while initially the user was approached from the
front, this is natural, but also blocks the way in case the user
wants to get up. Hence, it is preferable to approach the user
from her right side. In this position the robot is closer to
the user though slightly turned to the side. A touch screen
on an extendible robot arm may be technically ideal though
inhibitive in terms of costs.

III. COMPONENTS

In order to fulfill its tasks as a care robot, Hobbit must be
able to safely navigate in a domestic environment, detect and
track humans, recognize gestures, and grasp objects. In this
section we describe the major software components of Hobbit
and the algorithms used to achieve the required functionality.

A. Navigation

To enable safe navigation in domestic environments, Hobbit
must be able to generate a map of the environment, localize
itself, detect obstacles, and find a drivable path through (in-
cluding local navigation and fine positioning). This section de-
scribes the approaches used for SLAM-based map-building of
the environment and subsequently for self-localization based
on AMCL. An AD∗ algorithm is used for local planning and
obstacle avoidance. Finally, global planning from the current
pose of the robot to the destination pose is achieved using the
map of the environment and search-based planning(SBPL).

Map Building: Many processes in Hobbit depend on the
estimated pose of the mobile platform in relation to its
environment. A (metric grid) map of the environment serves as
basis for self-localization. In the first prototype of Hobbit we
refrained from using the full 2.5D information computed from
the depth images of both RGB-D cameras for mapping and
self-localization. Instead, we reduced the 2.5D data of only
the bottom RGB-D camera to a ground-parallel “virtual 2D
laser scan” along the optical axis of the camera. This allows to
use standard algorithms initially developed for 2D laser range
finders with an RGB-D camera. Such algorithms are available
and ready to use in ROS, and thus enable immediate practical
testing. Furthermore, working with reduced amounts of data

allows fast processing to meet real-time constraints even on
low-power PCs.

The 640 ∗ 480 individual 2.5D data of the ground-parallel
bottom RGB-D camera are initially reduced to 640 individual
virtual laser beams, that is, 640 angle/range pairs. To do so,
the range is obtained by estimating vertical structure for each
of the 640 columns using a ground-parallel slice of the 2.5D
data along the optical axis of the camera. This can be done
by accessing a few pixels per column above and below the
center row of the depth or 2.5D data. Given the RGB-D
camera produced valid depth information within such a slice,
the maximum distance measured within each column is used
as one range measurement of the virtual 2D laser scan. The
rationale for taking the maximum distance is that walls are
the boundaries of indoor environments and thus farthest away.
In our experiments we used a slice of ±4cm around the
virtual 2D scan plane. To be compatible with ROS, the 640
measurements were re-sampled into a scan with equal angle
increments (e.g. 0.5◦).

Fig. 8 shows an example of a virtual 2D laser scan (red)
in comparison to a real 2D laser scan of a Hokuyo URG-
04LX. The horizontal aperture angle of the RGB-D camera
is noticeably smaller than the one of the laser (58◦ for the
RGB-D camera versus 180◦ for the Hokuyo). Both scans
overlap very closely, the average error of the virtual laser scan
with respect to the real laser scan is below 1.25cm within
a range of 4m. When increasing the thickness of the slice,
more of the available 2.5D data is incorporated, with the
extreme case being that all 480 rows of the RGB-D camera
are used (i.e the whole vertical field of view). Since the
bottom camera is ground-parallel, 2.5D points corresponding
to vertical structure have very similar depth values and result
in one or few clusters in each column of the depth image.
Each of these clusters locally correspond to vertical structure.

Fig. 8. Left: original 2.5D data from the floor-parallel camera, virtual
2D laser scan (red) computed from that data, and Hokuyo URG-04LX scan
(green) for comparison. Right: projection of the scan data onto the floor plane;
one cell in the figure is 1m ∗ 1m. The red rectangle represents the robot’s
pose.

The map is generated in the traditional SLAM fashion:
The robot moves through an environment and incorporates the
measurements of the virtual laser scanner and of odometry.

We use the “gmapping” algorithm proposed by Grisetti et
al. [19] for mapping, since it is able to cope with uncertain
odometry data and short-range depth data. Gmapping uses
Rao-Blackwellized particle filters for map generation. Each
particle represents a hypothesis of the map itself. The particles
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are only updated when the robot has moved a specific distance,
in our case 0.25m. Due to the rapid decrease of depth
resolution of RGB-D cameras with increasing depth, only
virtual laser scans up to 4m are used. Scans that report a
higher distance will be only used for maintaining free space
information. The scans are aligned under consideration of the
non-holonomic constraints with a simple ICP approach [20]
for each particle while the robot is moving. We use a minimum
number of 500 particles and a maximum number of 2000.

During the setup phase of the Hobbit system, an expert will
execute mapping due to the technical nature of this process.
The expert has to take care that the map is consistent. It
is necessary that all movable objects are removed from the
map in a manual post-processing step, since those objects can
easily change position and thus must not be used during self-
localization. Our experiments have shown that it is necessary
to remove artifacts caused by the mapping process, e.g. single-
standing cells that are occupied. Those artifacts can prevent
the path planner from finding a suitable path later on. Fig. 9
illustrates the result of mapping an office environment; the
resolution of the map is 5cm ∗ 5cm per pixel. Although
mapping must be done only once prior to acquainting the
user with Hobbit, we will investigate possible approaches to
automate many of the steps that currently require an expert.

Fig. 9. Center: map of an office built from the virtual 2D laser scans using
SLAM. Left and Right: Views when standing in the office at the positions of
the read arrows and looking in the respective direction.

Self-Localization: For Hobbit, self-localization of the mo-
bile platform is done using the traditional “Adaptive Monte
Carlo Localization” method, short AMCL, originally proposed
by Thrun et al [21]. The robot pose is represented as a set
of multiple hypotheses with respect to an a priori known
map. AMCL incorporates sensor data from the virtual 2D
laser scanner and from the odometry of the mobile platform.
It allows both pose tracking and initial localization to cope
with the “kidnapped robot problem”. We use the standard 2D
occupancy grid model as map (with a resolution of 5cm∗5cm
per pixel). The occupancy grid represents the environment
as set cells. A cell can be occupied, free or unknown. The
map itself is obtained using mapping tools as described in the
previous sections.

Since the mobile platform has non-holonomic kinematics,
we use a translational/rotational motion model for the local-
ization.

Fig. 10 shows two stages of self-localization using AMCL in
ROS, the SLAMed map (using gmapping), the virtual 2D laser
scan and odometry data. The red arrows show hypotheses for
the platform pose, and the green dots represent the virtual 2D
laser scan. The platform was initially only roughly positioned

on the map origin so that the scan points do not match the
map very well. After moving a few meters, platform pose
hypotheses form a denser cluster and the scan points match
the map reasonably well.

Fig. 10. Self-localization using AMCL with virtual 2D laser scans and the
SLAMed map. The initial large uncertainty of the pose (left) grows smaller
as the robot moves through the environment and updates its pose estimates.

Obstacle Detection: To detect obstacles in front of the
robot we use the data from the downwards-tilted top RGB-
D camera. The camera driver not only provides depth images
but also disparity images. For the Kinect and ASUS Xtion
Pro these disparity images have 100 full disparity levels of
which each has eight sub-disparity levels. From the disparity
images a second virtual 2D laser scan for obstacle detection
is computed. We apply an approach that is based on “v-
disparities” [22]. In the original approach, for each row of the
image a histogram over the disparity values within that row is
computed. Given that the image rows are somewhat parallel to
the ground plane, the disparity values of the ground will cause
a distinct peak in each row of the histogram. The entirety of
these histograms can be visualized in the form of an image
that has as many rows as the disparity image, and a number
of columns that correspond to the number of histogram bins
(i.e. disparity levels). This “v-disparity image” is a gray-scale
image, in which the intensity of each pixel is proportional
to the number of votes that the corresponding histogram bin
has received. In this v-disparity image the peaks caused by
the disparity values of the ground plane lie on a straight line,
which can be easily detected using the Hough transform.

Our approach had been initially developed to work with
data from stereo cameras [23] and was further developed
for Hobbit. In the first step the original disparity image is
down-sampled by choosing a local representative for each
adjacent, non-overlapping 4 ∗ 4 pixel neighborhood. Since
we are interested in detecting obstacles within each of these
neighborhoods, the largest disparity value (corresponding to
the smallest depth) is selected. Then, all values of the neigh-
borhood are identified that are at most one disparity level
smaller than the maximum. Finally, the local representative
(i.e. one pixel of the reduced-resolution image) is computed as
the mean value of these disparities. Furthermore, the number
of disparity values that contributed to the local representative
serves as “confidence” measure for the resulting disparity
value. When compared to the original disparity image, single-
standing outliers are eliminated, small holes are closed, and
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measurement noise is reduced.
In the second step, the gradient magnitude of the reduced-

resolution disparity image is computed, and a bias subtracted.
This bias is the value of the slope of the floor-line in the v-
disparity image, which was determined in a previous calibra-
tion phase, see [23] for details. In the resulting image, pixels
corresponding to the floor plane have values close to zero
while vertical structures have high values. Another outcome
of the aforementioned calibration is the allowed disparity value
range of the ground plane pixels for each row, taking the
maximally allowed forward and backwards tilt of the robot into
account. We compute the v-disparity image from the reduced-
resolution image, but only for those pixels within the allowed
disparity value range and with corresponding biased gradient
magnitude values close to zero. This approach significantly
reduces the danger of wrong detection of the floor-line in the
v-disparity image of cluttered scenes and where only small
parts of the floor are exposed.

After determining the parameters of the floor-line in the
v-disparity image via Hough transform, those pixels in each
row of the reduced-resolution image are removed that have a
disparity value within a tolerance band around the disparity
value of the floor-line in that row, and that have a small
corresponding value of the biased gradient magnitude. The
remaining pixels correspond to obstacle points. From the
disparity values of the removed (floor) points and those of the
obstacle points 3D points are computed. A least-squares plane
fit applied to the ground points provides the normal vector
and parameters of the ground plane. A rectangular region of
that plane in front of the robot and within the camera’s field
of view is divided into a cell grid. We use a region that is
4m wide and 2m long, and the grid cells are 2cm ∗ 2cm in
size. Using the normal vector, the obstacle points are projected
onto the ground plane and vote into the grid cells. Only cells
that had received a certain minimum vote count are considered
occupied. Finally, a virtual 2D laser scan is computed from the
cell grid: the virtual laser scanner with an angular resolution of
0.5◦ is located in the bottom and horizontal center of the grid.
From this scanner we perform ray-tracing along the virtual
laser beams. As soon as an occupied cell is hit, the tracing
stops for that beam and the range from the scanner to the
respective obstacle point is determined. If no occupied cell
was hit by a beam, its range is set to maximum value (3m).
Fig. 11 shows an example result of the approach.

Path Planning: The objective of the path planner is to
seek for a possible path from the current position of the
mobile platform to a given (task-related) destination. It is
assumed that the environment and platform pose are known
at any time through self-localization. We use the search-
based planning (SBPL) algorithm for robot path planning.
Proposed by Phillips & Likhachev, SBPL [24] differs from
traditional A∗ methods. Originally developed for robotic arms,
it can also be applied for mobile robot motion planning.
Instead of planning a path with the shortest Euclidean distance,
SBPL uses predefined motion primitives that are kinematically
feasible. Planning is done in x, y, and theta dimensions,
resulting in smooth paths that take the orientation of the robot
into account, which is especially important if the robot has

Fig. 11. V-disparity-based floor detection and removal, and generation
of a virtual 2D laser scan for obstacle detection. Three example scenes
are depicted. The left column shows the RGB images of the scenes. The
processing results for each scene – top rows: confidence map of the reduced-
resolution disparity image, biased gradient magnitude, mask for disparity
values outside the calibrated range for floor points; bottom rows: reduced-
resolution disparity image without floor points, cell grid (red means free,
gray to white means occupied), and virtual 2D laser scan (blue indicates the
laser beams emitted from the virtual laser scanner indicated by the yellow
dot).

non-holonomic constraints. Plans are found using the AD∗

planner [25], a variant of the A∗ algorithm. SBPL runs in real-
time and needs approximately 300ms to find a path, depending
on the length of the path.

Since the mobile platform of Hobbit is non-holonomic,
we use two adapted sets of primitives that prefer forward
motion more than on-spot turning. The first set will be
used for exploring tasks by keeping a maximum distance to
obstacles and a preference for driving larger slopes than on-
spot turning. The second set is similar with the exception
that backwards motion is constrained to slow straight motions
only. These primitives will be used if Hobbit has to navigate
close to objects e.g. docking or grasping. In comparison to
the traditional A∗ approach SBPL paths are smoother and
kinematically feasible.

The path planner maintains an own (temporary) 2D occu-
pancy grid to store observed obstacles that have been detected
while the robot moves. This obstacle occupancy grid is built
from the data of the two virtual 2D laser scans mentioned
above. Both the (SLAMed) map and the obstacle occupancy
grid are used as input for planner. The planner is executed
at regular intervals when the mobile platform is moving,
using the current estimated pose from self-localization. This
allows to dynamically re-plan paths if they are blocked. If no
alternative path can be found, the robot waits for 5s. If the
path is still blocked, the planner gives up and reports to the
invoking level above.

Currently we use the virtual 2D laser scans computed from
the upper RGB-D camera as input to local navigation. A 2D
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occupancy grid, filled with the data the virtual 2D laser scan,
is the basis for the path-following algorithm: the well-known
dynamic window approach “DWA” [26]. It is directly derived
from the dynamics of the mobile platform, and is especially
designed to deal with the constraints imposed by limited
velocities and accelerations of the platform. It consists of two
main components: first, generating a valid search space, and
second, selecting an optimal solution within that search space.
The latter is restricted to collision-free circular trajectories
that can be reached within a short time interval. These time
intervals are called simulation time. The optimization goal is
to select a heading and velocity that brings the mobile platform
to the goal with the maximum clearance from any obstacle. It
provides safe and robust path following with reliable obstacle
avoidance. Fig. 12 shows an example.

Fig. 12. Snapshot of Hobbit navigating along a trajectory through several
rooms using virtual 2D laser scans for self-localization (green dots) and
obstacle detection (red points). The red arrows represent the pose hypotheses
generated by AMCL.

However, since we are using a probabilistic self-localization
approach that trades accuracy for robustness, the achieved
quality of positioning the platform is not sufficient for op-
erations such as grasping an object. To address this problem,
two dedicated fine-positioning commands are used. The first
command triggers the mobile platform to perform pure trans-
lation, forward or backwards, for a maximum distance of 1m.
The second command rotates the platform on the spot, left or
right, for a maximum angle of 180◦.

Since a mobile platform is an inert system that cannot move
arbitrarily small distances or angles, the minimum distance is
set to 3cm and the minimum angle is set to 3◦. In case the
desired distance or angle is smaller, the mobile platform first
moves in the opposite direction by a fixed value (10cm or 10◦)
and then moves in the desired direction by the desired distance
X or angle Y plus the fixed value (10 + Xcm or 10 + Y ◦).
Currently, the deviation between desired and actually achieved
translation and rotation is ±1cm and ±1◦.

Lessons learned: In narrow passages of cluttered domestic
environments - due to the small field of view of the depth
camera - it is not always possible to extract useful features
for self-localization. In order to bridge such a period without
good features without losing self-localization, good odometry
is required. Moreover, to provide an additional source for

Fig. 13. Vision-based 3D human observation. 3D human body detection
is performed identifying a human body (green color-left depth image) and
segmenting it from the background in the observed depth scene. Subsequently,
3D pose estimation is applied on the segmented body data to fit a 3D skeletal
model of the human body (right color image) and estimate the 3D position and
orientation of 15 body joints (white dots) and infer the body limbs(red/green
lines).

estimating the motion of the robot, an IMU can be used. The
decision of a depth camera instead of a laser was primarily
made to keep the robot affordable. However, it turned out to be
beneficial to use 3D data to generate 2D data for virtual laser
data. Using this data generation, we can handle protruding
table tops and other objects sticking out at any height while
2D lasers would fail. With the two-camera solution we can
also assure that we see below tables or chairs to walls, which
is helpful for localization, while the top camera guarantees
that the immediate front of the robot is supervised. This
considerably adds to the safety of the robot navigation.

B. Human Detection and Tracking

Vision-based human observation [27] encompasses a set
of fundamental perceptual mechanisms that socially assistive
robots should support. The first approach of the corresponding
framework for Hobbit and the developed perceptual compe-
tences are presented in more detail in [28].

Based on recent advancements in the field of computer
vision for 3D human observation and the availability of low-
cost depth-aware sensors, like MS Kinect [29], algorithmic
techniques for human pose estimation, recognition and track-
ing using depth visual data (e.g. [30], [31]) have become
computationally cheap and readily available at real-time per-
formance on conventional computers. We exploit the opportu-
nity to set Hobbit capable of supporting a rich set of vision-
assisted competences regarding both full-scale observation of a
human (full 3D human body detection, localization, tracking)
and partial, close-up observation (hand/arm/face detection and
tracking). Moreover, additional vision-based competences rely
on this module of the platform, such as gesture and activ-
ity recognition, vision-based emergency (fall) detection (see
Sec. IV-F), etc. To achieve these goals, we rely on RGB-
D visual data acquired by the “head” RGB-D camera of the
robot.

On a technical level, 3D scene segmentation and foreground
detection is initially performed for each acquired depth frame,
while the robot is moving or operating in place. Vision-
based extracted information regarding the scene background,
foreground as well as 3D floor-plane estimation are computed.
Subsequently, user detection and segmentation is performed to
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identify human bodies among the detected foreground depth-
based objects in each frame and track them in the scene across
frames providing a label map and unique persistent user IDs
for each pixel. The latter process is closely related to 3D
human body pose estimation and skeletal tracking that are
also applied as higher level processes towards human body
observation. Body pose estimation relies on a 3D skeletal
model that is comprised of 15 main body joints and 10
body limbs, as reported in [32], [33]. For each frame the
detected depth-based pixels assigned to a human body are fed
to the body pose estimator to fit the 3D skeletal model, see
Fig. 13. Moreover, 3D skeletal tracking is performed to obtain
seamless fitting of skeletal joint-related information across
frames. Practically, a readjustment of the skeletal body model
is performed in order to track the 3D positions/orientations of
basic body limbs and joints across frames.

Hobbit is capable of detecting and tracking both a standing
(moving or still) or a sitting user. In the first case, a full
skeletal model is employed as described above, whereas a
sitting user is detected and tracked based on a truncated upper
body version of the described skeletal model (see Fig. 14(a)).

Moreover, face detection and 3D head pose estimation [34]
are supported in order to enrich the vision-based extracted
information provided by the system, as illustrated in Fig. 14(b).
The face detector performs as a stand alone module providing
reliable information to user detection and segmentation mod-
ules while it can also be bootstrapped by the latter in case
of strong detection confidence of human body, eliminating
false positives, in case multiple or no face detection results
are obtained.

Lessons learned: The performance of 3D user detection
and tracking during the task performance of participants was
challenging. In many cases, the performance of human body
detection and pose estimation for a sitting user was deterio-
rated due to occlusion by the chair, table or couch for specific
poses of the user. In such cases, face detection served as a fall-
back to localize the user and act according to the executed task.
Moreover, the performance of the face detector is deteriorated
in cases when a user wears glasses or a hat, which are known
issues for face detectors. Our intention is to further improve
user detection, tracking, and the face detector based on the
noticed failures and false negatives during the user trials.

C. Gesture Recognition

A gesture recognition interface (GRI) has been developed
as part of the MMUI of Hobbit (see II-E), to provide
an additional input modality based on the interpretation of
physical arm/hand gestures to robot commands. This type of
interaction provides an intuitive control modality for human-
robot interaction that aspires to facilitate the communication
of older adults with the robot.

In order to realize this type of interaction, a number of
predefined gestures are supported by the GRI, as a physical
action-based vocabulary. Gestures are defined as a series of
postures performed using the upper body parts within a time
window of configurable length. The supported gestures can
be described as actions consisting of intermediate predefined

(a)

(b)

Fig. 14. In (a) 3D human body detection and tracking is performed for a
sitting user (green color) segmenting the relevant pixels from the background
in the observed depth scene. 3D pose estimation is applied to the data to
fit the 3D skeletal model of human body (gray lines representing the main
body parts of the skeletal model). In (b), face detection and 3D head pose
estimation [34] are demonstrated for a sitting user, based on RGB-D data
acquired by the upper(head) sensor of the robot.

postures of upper body parts. During interviews conducted
with elderly prior to the user trials, their preferences, intuition
and physical convenience were recorded and evaluated in
order to consider the predefined gestural vocabulary and the
correspondences to robot commands. The following physical
actions were validated as appropriate for usage in the GRI.

Each of the gestures consists of two or three primitives,
as composite actions. The “Raise hand” primitive is always
preceding any of the following combinations. It corresponds
to the physical movement of rising each of the hands at the
height of the chest or the shoulders with open palm towards
the camera (see Fig 15(a)). A hand tracking method is initiated
in the background each time any of the user hands is raised
as described. Subsequently, hand trajectories are recorded
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towards supporting gesture recognition. The list of gestures
includes the following actions: (a) “Push towards the robot”,
(b) “Keep palm steady & Swipe up or down or left or right”,
(c) “Move cyclic”, (d)“Raise both hands & Cross wrists” and
(e) “Keep palm steady & Extend the other arm to point”
(Pointing gesture).

Given that the user is within the field of view of the “head”
robot camera, she can perform any of the following gestures
to intuitively initiate a specific robot command/task to be
executed by the robot upon successful recognition. “Help-
the-user” robot command is triggered after a “Cross hands”
gesture is performed by the user and recognized by the robot,
see Fig. 15(a) “Pick-up-object” command is also supported by
performing the pointing gesture (extending the arm to point
any location-object in 3D space) in order for the robot to
pick up an unknown object from the floor. An illustration of
the “Pointing” gesture is provided in Fig. 15(b). Moreover,
answering “Yes/No” in human-robot dialogues is also feasible
using GRI by mapping any of the Swipe up/down and Swipe
left/right to affirmative and negative answers, respectively.

The hand tracking and gesture recognition algorithms used
in our implementation of the described functions relies on
the open source OpenNI framework [33] and the middle-ware
library NITE [35].

Lessons learned: The user studies revealed that many
participants found it difficult to adapt and perform the designed
gestures, despite the selection of intuitive physical actions as
gestures, even though appropriate training by demonstration
took place on site during the user trials. Moreover, in many
cases participants did not recall the set of gestures during the
interaction with the robot.

Regarding the GRI, a new methodology will be introduced
in order enhance detection and tracking of hands, but most
important extend its functionality to the fingers of the users.
Thus, a new set of finger-based hand postures and gestures
will be designed to replace the available robot commands.
Moreover, a learning mechanism will be introduced aspiring
to further explore adaptability and customizability of actions
performed by the users, loose the required fidelity of execution
for an action to be recognized, and therefore enhance the
recognition performance. In other words, the user will need
to only approximately perform any of the predefined gestures,
while an online learning procedure will customize the recog-
nition algorithm accordingly to adapt to the specific way the
individual performs those. In addition, an updated system will
also incorporate the ability for online definition, configuration,
and learning of new gestures and postures that the user may
desire to introduce to the interface and assign them to any
of the existing robot commands. Therefore, the user may
adapt the interface according to personal, daily habits, physical
capabilities, and cultural differences in using body language.

D. Grasping

For grasping unknown (Sec. IV-C) and known (Sec. IV-E)
objects, first the dominant horizontal plane, e.g. floor or
table surface is detected and the corresponding points are
eliminated. Clustering the remaining data delivers point clouds

(a)

(b)

Fig. 15. In (a) the “Help” gesture is demonstrated, crossing both wrists
at the height of the chest. In (b) the “Pointing” gesture is performed. The
user points to an unknown object in 3D space. The blue line indicates the
calculated 3D direction specified by the extended arm towards an object of
interest on a table. In both images the skeletal model of the standing subject
is also rendered in green-red lines for the main body limbs and white dots
for the joints.

of objects. A procedure tests if a point cloud is suitable for
grasping, taking into account object size and object position.
If the number of points is below a threshold value (n=200 for
the first user trials) or above a maximum number of points (to
rule out objects which are too big for grasping respectively
transporting), point clouds are not used as grasping targets.
Similarly, in the case an object is detected at a position where
grasping will probably fail it will also not be grasped; for
example when the robot detects an object below a table (maybe
the table leg) in the clean floor task (see section IV-C for
details). To eliminate the latter case, we compare each point
cloud position with the map recorded for navigation. In this
map we define graspable areas. In the case of grasping known
objects, grasp point detection is limited to the point cloud
identified as the desired object. Grasp points are calculated
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with Height Accumulated Features (HAF). For a thorough
description of this method we refer to [36] where it was
used to unload a box of unknown items and to [37] where
single standing objects as well as items in a pile of objects
were grasped. This method calculates feature values based on
height differences on the object and uses these feature values to
detect good grasp points by applying a grasp classifier that was
trained using Support Vector Machines (SVMs). A heuristic
selects the best rated grasp point from all detected grasp points.
Path planning for the robot arm including obstacle avoidance is
performed with the simulation environment OpenRAVE [38].

Lessons learned: The limited arm kinematics related to the
5 DOF arm mentioned in II-C often makes it impossible to
approach an object on a defined straight path keeping the
desired hand orientation. The limited arm kinematics was
compensated by an accurate fine positioning of the platform,
using the additional 2 DOF of the robot. The iterative fine
positioning step was time consuming and will be replaced for
PT2 by a more flexible calculation of the arm position when
grasping. In the PT1 user studies a grasp was accepted as
successful if the object was moved from its original place after
the arm moved out of the view of the head camera to a defined
position at the side of the robot. For faster operation/grasping
(as required by the users) a method is implemented for PT2
that checks a successful grasp after the gripper has closed,
taking into account the deformed gripper fingers when an
objects was actually grasped.

E. Object Learning and Recognition

For learning and recognizing objects, 3D shape descrip-
tors [39] are calculated from views of the object, coming in
the form of RGB-D data from the Kinect camera in the “head”
of the robot.

In the learning stage, objects are placed on a turntable
(Fig. 17(b)) and while rotating the arm each new view of the
object is stored in a database [40] and later matched against
in the recognition phase using random forests [41]. The re-
training of the forest is done immediately after new views of
an object are added to the database. This system design allows
great flexibility, e.g. a standard set of object classes can already
be present before the user teaches the robot specific objects.

In the recognition stage when the robot is sweeping for
objects by panning the camera, objects on flat surfaces (e.g.
tables and on the floor) are recognized on the fly and reported
back to the search algorithm.

Lessons learned: 3D object classification and recognition
on a robot has to deal with greatly varying working and
sensing distances. Learning objects on a turntable at a distance
of 80cm and recognizing these objects on tables (1.0m−1.5m)
and on the floor (1.5m−3m) is challenging given the different
resolution and noise level of objects at these distances. Clutter
in the environment is a major performance factor and has to be
considered in the training phase by including a special clutter-
class in the classification algorithm.

Reporting false objects as well as not finding objects will
not increase confidence of the user in the robot. Hence, single-
shot classification should be replaced by a more sophisticated

approach where the camera is centering on object candidates
for validation and thus eliminating false classifications at
image borders through cut-of-objects. In a second step, the
robot should move closer to the object for repeated recognition
under different approach directions for increasing the detection
rate. This needs to be done in cooperation with grasp planning
to position the robot ready for grasping.

From the user side, recognition of small objects (ear-ring,
glasses) was requested but this is currently out of scope as
the camera is too far from the floor/table and offers too low
resolution for this task. High resolution 2D image recognition
algorithms, novel 3D sensors, or bringing the camera closer
to the floor/table could address this user request.

IV. ROBOT TASKS

Our requirement studies [42] as well as the research of
others [43] indicate that older adults mainly expect assistance
in various household maintaining tasks from care robots, such
as making the bed, cleaning the windows, and cooking food.
However, this ideal of a robot butler (often inspired by science
fiction) cannot be fulfilled by current state-of-the-art platforms.
To overcome these limitations and to avoid over-promises, the
idea of Hobbit is that the robot performs meaningful tasks
for the user and cooperatively performs tasks with the user
where it needs help (e.g. learning a new object). This way
of designing robot tasks as encouraging collaboration with a
care robot is also suggested by Beer and colleagues [43]. In
this way, older adults can remain active and the robot only
compensates their limitations by assisting the task, such as
picking up something from the floor. In the following we will
describe the main tasks Hobbit can perform as care giver.

A. Call Hobbit

To facilitate easy calling of the robot to a specific place
when user and robot are not in the same room, self-powered
(by piezoelectricity) and wireless (EnOcean standard) call
buttons are used as part of the Ambient Assisted Living (AAL)
environment. Such stationary buttons can be placed e.g. near
the bedside, in the kitchen or in the living room wherever
the user is expected to be frequently. When the user presses
the call button, the robot will directly navigate to the known
place so that it brings itself into a closer interaction distance
and pose relative to the user which is suitable for touchscreen,
ASR, and GRI operation.

For the call buttons and the sensors of the AAL environment
tests were performed in an AAL lab [44] (see Fig. 16) with
different zones modeled similar to a realistic home environ-
ment.

B. Introduction Phase - User Specific Setup

The default settings of Hobbit are a good starting point
for most users. To allow for individual adaptation a so-
called Initialization Script, which runs upon first introduction
of the robot to the user and later on user request, guides
the user through a set of questions. The user is asked for
preferences on sound volume and robot speed as well as
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Fig. 16. Map of AAL laboratory used for robot trials in an intelligent
environment.

gender of the speech output voice; the user is invited to try
out speech, gesture, and screen input and can give the robot
an individual name it will answer to. The final prototype will
also allow to configure the individual behavior settings, such
as different robot personalities (more companion-like or more
machine-like) and proxemics parameters. The selected values
are directly demonstrated during the process to give the user
immediate feedback.

C. Clear Floor

Triggered by voice or touch screen, Hobbit is capable of
cleaning the floor from objects laying around. The robot first
detects the floor as the main horizontal plane and eliminates all
points corresponding to the floor and clusters the remaining
data to objects. The use of lower and upper limits for the
size of point cloud clusters enables the elimination of objects
that are too big (too heavy to be lifted by Hobbit) or too
small (sometimes the floor is slightly rippled which leads to an
insufficient ground floor elimination). The robot uses structural
information about the domestic environment gathered during
mapping phase to eliminate objects that are unlikely or impos-
sible to grasp. As an example, if an object cluster is placed at
the position of a wall, Hobbit does not try to grasp it since it
is probably a segmented part of the wall. If Hobbit finds an
object on the floor, it moves towards the object, grasps it and
brings it to the user. If no graspable object was found, Hobbit
changes its position and searches again on the floor until the
floor is emptied or a stopping criterion is fulfilled (e.g.time
spent on the task or the number of tries exceed predefined
thresholds).

D. Learn New Objects

To learn a new object, the robot has to see the object from
multiple views and – for objects like a pack of aspirin which
can be found in any pose – from upside-down. To achieve
this, the robot uses a small turn-table (see Fig. 17(b)). The
turntable is designed in a way that the gripper can hold it in a

defined pose. The user is asked to put the new object onto the
turntable. The robot then slowly rotates its arm and captures
views of the object while its turning. After a full rotation, the
user is asked to put the object upside-down to now learn the
previously unseen sides of the object. The turntable rotates
again and views are captured and stored. Now the user has
the choice of teaching the robot another object or remove the
current one. After finishing learning, the newly learnt object
can be used in other tasks such as “Bring Object”.

E. Bring Object

Users can command Hobbit to search and bring a previously
learnt object. For objects often needed by the user, Hobbit
saves the typical object location, (e.g. the kitchen table).
Hobbit first searches at this place, grasps the object, puts it on
its tray and brings it to the user. To simplify scenarios during
user trials, we used predefined arm positions for grasping.
After the searched object was found, Hobbit places itself in a
predefined position with respect to the object and executed a
fixed arm movement to grasp the object.

F. Fall Detection and Help Function

Fall detection of older adults is a major health risk and
several systems have been proposed for the automatic early
detection and prevention of such emergency cases [45], [46],
[47]. To this end, fall prevention and detection is a crucial
functionality that Hobbit is designed to support in order to
help elderly users to feel safe in their home, by identifying
body fall/instability or the user lying on the floor and handling
emergency events appropriately.

A fall detection function is continuously running by the
system as a background process. In the first place, it is able to
recognize abrupt motion of a detected and tracked human body
that indicates instability or an ongoing fall. Additional events
can be captured as emergency alerts by the help function based
on the GRI and ASR modules of the system (see II-E), such
as a predefined emergency gesture or voice command, with
which the older adult can ask the robot for help.

On a technical level, body fall detection is based on in-
formation related to 3D body skeletal tracking that relies on
visual data acquired by the “head” camera of the robot and the
3D human observation functions (see III-B). A 3D bounding
box of the detected human body is calculated for each frame
and emergency detection is performed by analyzing the length,
velocity, and acceleration of each dimension of the calculated
3D bounding box in time. Fig. 17(c) illustrates a relevant case
during lab trials. Our methodology bears some resemblance to
the method in [48].

In case of a detected emergency, a subsequent part of the
help function is triggered, namely the emergency handler, that
enables the robot to safely approach the user’s position, initiate
an emergency dialogue to calm him and perform a phone call
for help, if necessary.

G. User Entertainment and Social Connectedness

Hobbit offers entertainment by allowing the user to listen
to favorite music, watch videos, and play games. For the
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(a) Clear Floor (b) Learn Object (c) Fall Detection

Fig. 17. User trials: Hobbit brings an object from the floor to a user (left, for completed user trials Hobbit did not use human pointing directions, this feature
will be included for coming user trials in real apartments); Hobbit learns a mug; Hobbit detects a user fall and calls for help (right).

Fig. 18. The GUI page that provides access to entertainment options.

first prototype (only) some examples were integrated in the
menu of the GUI (see Fig. fig:guientertainment). For the
final prototype these will be extended adding also access to
social media. Hobbit offers services for social communication
including an Internet phone used for the emergency scenario
during the first empirical trials, but which can also be used to
stay in touch with friends and relatives.

Fig. 19. The GUI page that provides access to a variety of useful information.

V. FIRST USER STUDIES

First empirical user studies in a controlled laboratory setting
with the Hobbit PT1 were carried out in Austria, Greece, and
Sweden with a total of 49 primary participants. The studies
were based on six representative interaction scenarios that
should demonstrate the core tasks of Hobbit to the participants
and that should enable us to explore the following research
questions:

• How do older adults (with representative age impair-
ments) perceive the multimodal interaction possibilities
of Hobbit in terms of usability?

• Do older adults accept Hobbit as assistive household
robot after interacting with it in the laboratory?

• How do older adults perceive the value of Hobbit as
support to enable independent living at home with respect
to affordability and willingness to pay for it?

From a methodological view point we were also interested
in collecting data for improvements to be implemented into
the next prototype, as well as considerations which have to be
taken into account for future studies with older adults, above
all for later field trials in the private households.

A. Sample

As mentioned before, the ultimate goal of the Hobbit robot
is to enable older adults to live independently at home as long
as possible. In Austria the age of older adults moving to a
care facility is around 81 (according to the in-house statistics
of the care facility in Austria we cooperated with), with
men on average being slightly younger (76 years). Therefore,
we decided to conduct our studies with participants aged 70
plus, as these will be the users who will have a Hobbit at
home. Additionally, we tried to have a representative sample
in relation to the typical age impairments [49]. In order to
identify impairments we used self-reporting via telephone in
the recruitment phase to assess the grade of impairments
in the field of vision, hearing, and mobility. Many of our
participants experienced impairments in more than one of
the three categories. In total, 44 (89.8%) had some form of
multiple impairment (e.g. moderate vision and minor mobility
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problems) and 78% of the sample fulfilled the impairment
requirement of having at least one impairment graded as
“moderate”.

A total of 49 participants took part in the trials as primary
users (PU) of which 25 were randomly allocated to a Mutual
Care condition and 24 to the control condition. However, the
experimental differences of these two conditions are not the
focus of this article, but are presented elsewhere [50] as well
as findings related to specific impairment groups [51]. In 35
cases the PUs were accompanied by secondary users (SU)
- relatives or friends, whose presence was assumed to help
primary users feel more comfortable during the experiment. In
Austria 12 PUs and 9 SUs took part in the study; in Sweden
21 PUs and 11 SUs and in Greece 16 PUs and 15 SUs.

B. Representative Tasks

The user studies were based on six tasks, which were
representative for the core functionalities of Hobbit, in order
to allow participants to reasonably assess the acceptability and
affordability of the robot, besides exploring usability problems
with the multimodal interaction paradigm.

1) Introduction: This task served as an ice-breaker to
familiarize the participant with the robot. Hereby the robot
introduced itself and explained its functionalities; Hobbit
guided the user through a configuration dialog to define setup
attributes like robot voice, sound volume and user name.
Additionally, the user could try out speech, gesture, and screen
input.

2) Clear Floor: This task demonstrated the clear floor
functionality. The user had to command Hobbit to pick up
an object from the floor, put it on its tray and bring it to the
user.

3) Learn Object: This task demanded that the participants
help the robot (one aspect of Mutual Care) to learn a new
object. In order to learn an object the participant was asked
to put the object on a specific “learning turntable”, which
had to be put into the gripper of Hobbit. When the task was
finished, half of the participants (i.e. Mutual Care condition)
were thanked by the robot for teaching it a new object and
were offered that Hobbit could return that favor. If partici-
pants wanted the favor returned, Hobbit offered a surprise (a
randomly chosen joke, video or music file). The other half of
the participants (i.e. the control group) were just told by the
robot that it successfully finished learning at the end of the
task. In other words, although participants of both groups had
to help the robot, only the Mutual Care group received the
stimulus that the robot wants to return the favor of helping it
to learn an object.

4) Bring Object with Failure: This task was set-up inten-
tionally in a way that Hobbit first failed to bring the object
after the user commanded it to do so. In the Mutual Care
group Hobbit then returned and asked the user if she might
help it finding the object. In case the participant agreed she
could specify the whereabouts of the object via touchscreen.
After another search using this information the robot returned
with the object. It thanked the participants for the received
help and offered to return the favor by letting them choose

Fig. 20. Briefing Area (left) and Main Testing Area (right), both in Austria.

from its entertainment menu. On the contrary, in the control
group the robot returned to the participants and only reported
that it could not fulfill the task. In other words, no help was
demanded or given at all.

5) Bring Object: This task was exactly the same again
for both groups. Hobbit searched for another object and
successfully brought it to the participants. This was intended to
demonstrate participants of both groups that Hobbit in general
is capable of bringing a specified object on its own.

6) Emergency: This last task was again the same for
both groups and should demonstrate to the participants how
an emergency call scenario with Hobbit would look like.
Therefore an actor played a senior falling on the floor in
front of Hobbit. Hobbit detected the accident, started a calming
dialog and then established an emergency call, which was then
handed over to the participant.

C. Setting and Procedure

We began the user studies at the Austrian test site in
March 2013, and then continued in Greece in April, and
finally conducted the trials in Sweden in early May. The trials
consisted of three parts: (A) the introduction phase, including
a pre-questionnaire and briefing on how to use Hobbit and
what it can do (B) the actual user study with the robot (six
representative tasks) and (C) the debriefing phase. The setting
for the user studies was very similar at the three test sites: It
always consisted of two adjacent areas with separation screens
and a doorway in between. We had a Briefing Area at all sites
(see Fig. 20, left) and a Main Testing Area (see Fig. 20, right).
This area was decorated as a living room including a cozy
chair for the PU and a space in the background for the SU
and the study facilitator.

The following people were present during the trials:

• The primary user,
• the secondary user,
• the facilitator: a researcher who introduced the robot and

guided the user through the trial tasks,
• a scientific observer: a researcher who remained in the

background and observed the users’ behavior and reac-
tions or incidences during the studies, such as unexpected
reactions from the participants and technical problems,

• a technician: a researcher who also remained in the
background to navigate the robot with remote control
and assure that the robot functioned correctly, especially
during learning, object recognition and grasping, which
were autonomously done by the robot.
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This semi-autonomous setting ensured the same study con-
ditions for every participant. In total, one trial lasted on
average 2.5 hours (including introduction and debriefing ques-
tionnaire). However, if wanted, users could take breaks in
between phases or tasks.

D. Instruments and Measures

The user studies were based on a multi-informant approach
taking into account data generated by the PUs, SUs, and the
scientific observer. We used observational protocols filled in
by the SU and the scientific observer, moreover questionnaires
were filled in by the PU together with the study facilitator in
an interview-like manner. All trials were also video-recorded
to fill gaps in the observation protocols after the study. In the
following we will describe our measures for the three research
aims respectively.

1) Usability Measurements: In order to measure how par-
ticipants perceive the usability of interacting with Hobbit they
had to answer the following three usability-related questions
after every task (post-task questionnaire) on a 4-point scale,
with “1‘” always being the negative pole and “4” the positive
one.

• How easy was the task to accomplish?
• How intuitively could you operate Hobbit in this task?
• How was the pace of the task?

Moreover, we developed a debriefing questionnaire, which had
to be filled in by all participants at the end of the trial (all
items had to be rated on a 4-point scale, with 1 always being
the negative pole and 4 the positive one). This questionnaire
contained eight selected items from the System Usability
Scale questionnaire [52]. Additionally, they were asked to
rank the three input modalities (speech, gesture, and touch
screen) according to the usage preference and subsequently
three usability detail questions regarding the touch screen were
posed.

2) Acceptance Measurements: In order to measure if partic-
ipants accept Hobbit as an assistive household robot we posed
the following questions in the debriefing questionnaire

• Which pick-up functionality is the most important/helpful
for you?

• How important would it be for you, if the robot transports
objects?

• Could you imagine having the robot for a longer period
in your home?

• Could you imagine having a robot taking care of you?
• How helpful do you think the robot would be in your

home?
• How did you like being entertained by the robot?
3) Affordability Measurements: Similarly, the perceived

value of Hobbit and if participants consider it affordable
was measured using the following items in the debriefing
questionnaire.

• Would you buy such a robot for 14.000 Euro?
• Could you imagine buying such a robot for yourself in

general?
• Could you imagine your relatives buying such a robot for

you?

• Could you imagine renting such a robot if you needed it?
• Could you imagine buying such a robot, if it could

postpone your moving into a care institution by one year?

E. Results

In general, PUs were rather skeptical in the beginning if the
robot could assist them. However, after working with the robot
for the few tasks, PUs mostly enjoyed the trial situation and
found the tasks easy to accomplish and the interaction with
Hobbit understandable and traceable. In the following we will
present the results on our three research aims in more detail.

1) Usability: The post-task questionnaire items on usability
revealed that participants perceived all tasks as rather easy
to perform together with Hobbit and that similarly operating
Hobbit was perceived as intuitive (however, it needs to be
considered that participants had the free choice to decide
which input modality: speech, gesture or touch to use). PUs
were also asked to rank which mode of operation they pre-
ferred (n=49). The result showed the following order: voice
commands (49%), touch screen (42.9%), gestures (6.1%). SUs
(n=35) were asked to rank the operation options as well. Again
voice was chosen most often as the most preferred option
(49%), touch screen was in second place (16.3%) and then
gestures (2%).

Additionally, the observational data revealed that most par-
ticipants were rather skeptical or insecure in the beginning,
but then became more and more confident in the interaction
with Hobbit. Moreover, it became apparent in the observation
protocols that participants often began interacting with Hobbit
with speech as input modality and then switched to the touch-
screen. For Task 3 (Learn Object Task), it could be observed
that this task was most challenging for the participants (putting
the turntable in the gripper, following the instructions of the
robot and being dependent on understanding the instructions
to successfully complete the task). Thus, this robot task needs
improvement in order to be successfully performed by older
adults together with the robot.

2) Acceptance: Regarding the core functionality of Hobbit
to pick-up objects PUs ranked fetching objects from the floor
as the most important/helpful functionality (49%), followed by
fetching objects from high shelves (32.7%), whereas fetching
objects from tables was only considered as most important
by 10.2%. However, 77.6% of the PUs also considered the
functionality that Hobbit transports small objects for them as
rather or very much important, but only 53.1% of the SUs
considered that.

In total 57.2% of the PUs could imagine to have the robot
at home for a longer period of time and even 65.3% could
imagine that Hobbit takes care of them. Interestingly, 49%
of the PUs considered the robot as rather or very helpful
at home, but almost an equal number of PUs (44.9%) were
skeptical about its helpfulness. Moreover, when asked if they
could imagine having a robot taking care of them, frequent
comments from PUs were that they would prefer a human
being. Similarly, some also voiced the opinion that the robot
could indeed be helpful, but that they themselves were still too
healthy or active to need such a device now. We consider this
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partly as an answer effect [53], as it would be stigmatizing for
an older adult to admit that they need a robot to independently
live at home.

Finally, the entertainment functionality was considered as
very enjoyable by the PUs during the user studies. In total
92% of the PUs stated that they rather or very much liked it
to be entertained by Hobbit. Hereby, participants mentioned
memory training, music, audio books, and fitness instructions
as most interesting, while cooking recipes and computer games
were rather unpopular among our participants.

3) Affordability: The question if PUs would be willing to
spend 14.000 Euro for the robot (a production estimation made
by the project consortium) was not surprisingly rated rather
low (only 4.1% rated answered this question with “rather”,
nobody with “very much”). However, the question if one could
independently from the price imagine to buy such a robot was
rated better. In total 34.7 % of the PUs could imagine to buy
such a robot, however, they were skeptical if their SUs would
be willing to buy such a robot for them.

The willingness of having such a robot however increased
when we asked for renting options: 77.6% of the PUs could
imagine to rent the robot and 81.6% could imagine to have
such a robot in case it could postpone the movement into
the retirement home. Even though the last question can be
considered a leading question, the answer behavior neverthe-
less demonstrates that the willingness of independent living
at home out-rules potential fears and rejection tendencies of
robotic technology.

F. Summary

To summarize, we now want to answer our three research
questions. Regarding RQ1 (Usability), it can be said that
the questionnaire results showed that improvements are still
necessary for the initialization dialogue and wording of robot
instructions in general. The robot was furthermore mostly
perceived as being rather slow in the tasks. On the whole, the
multimodal approach of Hobbit with interaction possibilities
via voice, touch screen, and gestures was confirmed by the
users. Voice and touchscreen were the possibilities, which
were used most often. The Learn Object task, however, will
need to be adjusted and made more intuitive for older adults,
including instructions from the robot and easier handling of
the turntable for objects.

Regarding RQ2 (Acceptance) it could be demonstrated
that the most relevant and helpful household functionalities
for our participants were picking up objects from the floor
and transporting small objects. Entertainment functionalities
very highly appreciated by the participants, whereby memory
training, music, audio books, and fitness instructions were
preferred. More than half of our participants could imagine to
have the robot at home for a longer period of time and that it
could take care of them, even if the majority clearly preferred a
human to do that, but overall the robot was positively perceived
as care-giver.

Finally, with regards to RQ3 (Affordability), answers in
the debriefing questionnaire clearly indicated that participants
were skeptical of buying such a robot, but could imagine

renting it for some time if needed. From the results, it can
be assumed that SUs are more likely to be a buying target
group.

Lessons learned: From our first user trials we could derive
several relevant methodological lessons learned for fellow
researchers. During the recruitment procedure we noticed that
telephone reports are a resource saving option for the catego-
rization of impairments, but that they do not in all cases depict
reality (as participants do not want to stigmatize themselves or
they are not aware of the severity of an impairment). Therefore
for the next trials we will use self-reports only as a first
selection criteria and follow up with simple exercises that give
insights on the impairment grade.

During the trials we noticed, that the effect, that older adults
are insecure or afraid of using the robot vanished after the ice-
breaker task. Therefore we recommend to use an initialization
phase in which the participant can get used to the robot for
every laboratory or field trial study with care robots that
involve older adults as target group, as it reduces the novelty
effect bias in the data. Additionally, having SUs present during
the trials was of high added value for our studies, as the
PUs were more relaxed during the trials similarly to what
has been shown in studies for child-robot interaction [54]. A
lot of additional qualitative reflection data could be gathered
this way from both PUs and SUs. Moreover, involving SUs
as observers not only increased the interpretability of the
observation results, but also ensured that they do not get too
much involved in the interaction with the robot (it was still
the PU we explored and not the SU).

Answering the questionnaire items in an interview-like
manner together with the facilitator also proved its value to
ease the overall study procedure for older adults and enabled
us to ensure that the questions were correctly understood by
the PU. However, we are aware of the fact that it might
also have increased the amount of socially desirable answers,
a phenomenon which can be even more observed in user
studies with older adults [53]. Finally, the semi-autonomous
Wizard-of-Oz design enabled us on the one hand to provide
comparable situations for all participants due to the remote-
controlled parts, but on the other hand also allowed to test key
behaviors autonomously.

VI. CONCLUSIONS

In this article we presented results from the development
of the first HOBBIT robot prototype and the first set of
user trials in a controlled laboratory setting focusing on the
development of a socially assistive care robot for older adults,
which has the potential to promote aging in place and to
postpone the need to move to a care facility. Hobbit is designed
especially for fall detection and prevention (e.g. by picking up
objects from the floor, patrolling through the apartment and by
employing reminder functionalities) and supports multimodal
interaction for different impairment levels. The results from
the user studies with the first prototype (PT1) demonstrate that
the robotic system can perform its core tasks in a satisfying
manner for the target group. All participants were capable of
performing all tasks together with the robot and assessed it
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as usable and acceptable. This was in particular astounding
as users first approached the robot with great skepticism and
doubted it could help or assist them.

The desirable long-term goal is that Hobbit enters real
homes of older adults and that it provides a feeling of being
safe and supported to its owner. Therefore, in the next period
of the project we will test if our methods for autonomous nav-
igation in the domestic environments, the strategies for human
detection & tracking and object recognition and grasping, as
well as the multimodal interface for interaction constitute a
suitable framework for the overall scenario of a socially assis-
tive robot for fall prevention and detection. After extensive
testing we will conduct one of the (up to our knowledge)
first long-term household trials with Hobbit in 20 private
households (again in Austria, Greece, and Sweden) in order to
explore how the user reception of robot and the self-efficacy of
the user changes over time in a three weeks (per user) period.

We believe that methods, results, and lessons learned pre-
sented in this article constitute valuable knowledge for fellow
researchers in the field of service robotics and serve as a
stepping stone towards developing affordable care robots for
the aging population.
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