HOBBIT – Towards a Robot for Aging Well

Markus Vincze

TU Wien, Coordinator

www.hobbit-project.eu
Demographic Challenge

• Strong growth of population of old people
• Wish to be independent
• **Fall** is main reason for moving to a care facility
• At least one fall per year (in Austria, 8M people)
 – Senior citizens > 65 years 30% (N=440.000)
 – Senior citizens > 80 Jahre 50% (N=207.000)
• Direct consequences of a fall
 – Citizens > 65 years: > 50% of hospital visits due to falls
 – 14.000 fractures of thigh bones per year
 – 3 hours limit: otherwise more severe complications
Automatic Fall Detection

• Different sensors
 – Installation in home
 …. high installation costs
 – On the person
 …. limited acceptance

• Conflict of goals
 – Sensitivity
 (no false alarms FA; = TP / (TP+FA))
 – Specificity
 (no false positivies FP; = TA / (TA+FP))
HOBBIT – A Pragmatic Approach

• HOBBIT puts user in centre of all design issues

• Approach: Mutual Care
 – User needs help from robot
 – Robot imperfect: user helps
 • E.g., learn favourite objects of user
 • E.g., open doors for robot

• And develops the needed technology
Robot: closing the gap but no replacement of personal care

Haus der Barmherzigkeit

Haus der Barmherzigkeit
HOBBIT: User–driven Approach

- User workshops
 - A, S, Gr
- Emphasis on Mutual Care paradigm
 - User helps robot
 - Robot helps user

<table>
<thead>
<tr>
<th>COMMANDS & SERVICES</th>
<th>PRIORITISATION of the users (D1.2)</th>
<th>PRIORITISATION Considering Mutual Care implementation</th>
<th>PRIORITISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call friend</td>
<td>1</td>
<td>-</td>
<td>1-</td>
</tr>
<tr>
<td>Surprise me</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Play Games</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Go recharging</td>
<td>2</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Follow Me</td>
<td>2</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Bring Object</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Pick up Object</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Learn Object</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Call robot</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Initialization Dialogue</td>
<td>1</td>
<td>+</td>
<td>1+</td>
</tr>
<tr>
<td>Reminder</td>
<td>1</td>
<td>-</td>
<td>1-</td>
</tr>
<tr>
<td>Emergency Detection and Handling</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Energy Management</td>
<td>*</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>AAL alarms</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Incoming Call</td>
<td>1</td>
<td>-</td>
<td>1-</td>
</tr>
</tbody>
</table>
Fall Prevention and Acceptance

- User-centred MMUI
 - Reachable screen
 - Touch, voice, gestures
- Pick-up, learn, bring object
 - Turntable
 - Tray to store objects
- Emergency detection
 - MMUI: Touch, button, voice, posture
- Integration on small platform
HOBBIT Summary

• Introduce robot to user by trusted person

• Mutual Care: robot and user help each other
 – Attachment theory (pets, tamagochi)

• Learn object
 – Engage user & make her feel self-confident

• Pick-up object more important than bring object
 – Emotions to express needs: asking for reward

• Detect emergency situation
 – Hand shake before alarm, Calming dialogue