Fast Semantic Segmentation of 3D Point Clouds using a Dense CRF
with Learned Parameters

Daniel Wolf, Johann Prankl and Markus Vincze

Abstract—1In this paper, we present an efficient semantic
segmentation framework for indoor scenes operating on 3D
point clouds. We use the results of a Random Forest Classifier
to initialize the unary potentials of a densely interconnected
Conditional Random Field, for which we learn the parameters
for the pairwise potentials from training data. These potentials
capture and model common spatial relations between class
labels, which can often be observed in indoor scenes. We
evaluate our approach on the popular NYU Depth datasets, for
which it achieves superior results compared to the current state
of the art. Exploiting parallelization and applying an efficient
CREF inference method based on mean field approximation, our
framework is able to process full resolution Kinect point clouds
in half a second on a regular laptop, more than twice as fast
as comparable methods.

I. INTRODUCTION

Understanding the contents and the meaning of a perceived
scene is one of the tasks in computer vision research,
where human perception is still far ahead compared to the
capabilities of artificial vision systems. However, being able
to interpret and reason about the immediate surroundings is
a crucial capability to enable more intelligent autonomous
behavior. Semantic scene segmentation or semantic scene
labeling addresses the core of this problem, namely to
decompose a scene into meaningful parts and assign semantic
labels to them. Especially for indoor scenes, this is a very
challenging task, as they can contain a huge variety of
different objects, possibly occluding each other, and are often
poorly illuminated.

However, as most man-made environments, indoor scenes
usually exhibit very distinctive structures and repetitive spa-
tial relations between different classes of objects. A wall is
normally enclosed by other walls, the floor and a ceiling;
chairs are often placed next to tables, pictures hang on
walls etc. Being able to capture, model and exploit these
kinds of relations can drastically improve the quality of
semantic segmentation results for indoor scenes and can be
considered as the main contribution of research presented in
this paper. Moreover, every step of the framework has been
optimized for fast processing times, a crucial aspect to enable
applications of semantic segmentation on mobile robots.

We propose a fast semantic segmentation framework,
which processes 3D point clouds of indoor scenes. After
oversegmenting the input point cloud in a first step, we
calculate discriminative feature vectors for each segment
and calculate conditional label probabilities using a Random
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Forest (RF) classifier. This output is then used to initialize
the unary potentials of a densely interconnected Conditional
Random Field (CRF), for which we learn the parameters for
the pairwise potentials from training data. These potentials
incorporate the likelihood of different class labels appearing
close to each other, depending on different properties of the
underlying 3D points such as color and surface orientation.

In a thorough evaluation on the popular NYU Depth
datasets [14], [15], we show that our approach achieves
superior results compared to the current state of the art.

Because we can apply an efficient CRF inference method
based on mean field approximation [9] and the feature
extraction and classification stage is fully parallelized, our
framework is able to process a full resolution point cloud
from a Microsoft Kinect in half a second, clearly outper-
forming comparable methods.

II. RELATED WORK

Particularly since the rise of cheap RGB-D sensors as
the Microsoft Kinect, many different approaches have been
presented to tackle the problem of semantic segmentation for
indoor scenes [14], [12], [1], [16], [71, [8], [4], [6], [5], [17].

Silberman et al. presented the first large indoor RGB-D
dataset [14], containing thousands of frames, from which
over 2,000 have been densely annotated. The baseline algo-
rithm they proposed trains a neural network as a classifier
and then applies a CRF model which does not incorporate
specific class label relations. On the same dataset, Ren et al.
[12] presented impressive class accuracy scores. They use
kernel descriptors to describe RGB-D patches and combine
a superpixel Markov Random Field (MRF) with a segmen-
tation tree to obtain the labeling results. However, their
complex approach takes over a minute to compute for a
single frame.

Valentin et al. [16] as well follow the common paradigm
of a classification stage followed by a Conditional Ran-
dom Field. They calculate an oversegmentation for a mesh
representation of the scene and classifiy the mesh faces
with a JointBoost classifier. Again, their CRF does not take
individial label relations into account and only contains
contrast-sensitive smoothing.

The segmentation pipeline of Hermans et al. [6] has a
similar framework architecture compared to our work, since
it also contains a Random Forest classifier, followed by a
dense CRF model. However, their features are mostly based
on 2D data, compared to our set of 3D features. Using
the fast CRF inference method from [9], they achieve com-
petitive runtimes, but they only use simple Potts potentials
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Fig. 1: Overview of our segmentation framework, which works on RGB-D point clouds. Details about the separate steps

are given in section III.

in the CRF model. Also using a Random Forest classifier,
Wolf et al. [17] achieve good results on the NYU datasets,
but on a very reduced set of labels, which simplifies the
problem. They formulate a Markov Random Field, which
only performs spatial smoothing on the classification result.

Gupta et. al presented a framework based on a bottom-
up segmentation method using amodal completion to group
segments [4], which they extended in [5] by RGB-D object
detectors to improve the feature set. Achieving state-of-the-
art results on a 40-class labeling task, their method does not
focus on processing time and no measurements are given in
this respect.

In contrast to all of the mentioned approaches, several
methods have already been proposed which try to learn and
model some sort of contextual relation between class labels:

Anand et al. [1] model the labeling task in a huge graphical
model, capturing spatial relations of class labels depending
on different features. They show very accurate results for
their dataset, however, solving the resulting mixed integer
problem takes 2 minutes per frame. They claim that a relaxed
formulation, with a small decrease in labeling accuracy, can
be solved in 50 ms, but they do not mention the total runtime
of their pipeline including pre-processing, feature extraction
etc.

Combining some advantages of binary trees and CRFs for
labeling problems, Kdhler et al. [7] proposed a method using
Decision Tree Fields (DTF) or Regression Tree Fields (RTF)
for semantic scene labeling. Their framework is able to learn
unary and pairwise terms of the CRF from training data,
which results in comparable performance to the complex
model of [1]. With inference times of 50 — 300 ms their
method is also very fast, but again timings do not include
all stages of the pipeline.

Couprie et al. [2] train a large multiscale convolutional
network to automatically determine features and spatial re-
lations. Their approach is capable of processing an RGB-D
frame in 0.7 s, but only if subsampled by a factor of 2 in the
first place.

Similar to our work, Kim et al. [8] presented a framework
with a CRF model defined on the 3D voxel level, capturing
semantic and geometric relationships between classes. For a
very coarse pre-defined voxel grid with 4.5cm? resolution,
they achieve good results on the NYU datasets. Runtime has
not been the focus of their approach and is not mentioned.
However, since specific detectors for planes and objects are
used to initialize the CREF, besides pre-calculated feature
responses from [12], processing time cannot compete with

our method.

In the following section, we describe our proposed seman-
tic segmentation framework in detail. Section IV explains the
setup used for the conducted experiments and section V dis-
cusses their results and contains a detailed runtime analysis,
before we conclude in section VI.

III. APPROACH

A general overview on our proposed semantic segmenta-
tion framework is given in Figure 1. Our approach operates
on 3D point clouds, generated by RGB-D sensors such as a
Microsoft Kinect. In a first step, the raw input point cloud
is transformed into a voxel representation with a defined
minimum voxel size. For the created voxelized point cloud
we compute an oversegmentation, such that the scene is
clustered into small patches of voxels with similar appear-
ance. In the next step, a feature vector, which captures shape
and appearance properties, is extracted for each patch and
then processed by a pre-trained Random Forest classifier. For
each patch and label, the classifier outputs conditional label
probabilities, which are used in the final step to initialize the
unary potentials of a Conditional Random Field.

In the CRF model, we define pairwise smoothness po-
tentials to locally reduce the noise of the classifier stage.
Furthermore, long-range pairwise potentials incorporate the
likelihood of different class labels appearing close to each
other, enabling the CRF to resolve ambiguous classification
results. The label compatibility terms used to calculate these
potentials are completely learned from training data and
capture the contextual relations between the class labels.
The final labeling result is obtained by minimizing the CRF
energy, which can be efficiently achieved using mean field
approximation. The following sections describe the separate
steps of our framework in more detail.

A. Oversegmentation

To be able to compose a robust and meaningful set of fea-
tures for the classifier, we do not calculate a feature vector for
every 3D point of the input point cloud, but for whole patches
consisting of several points which likely belong to the same
class. Assuming that the points of such a patch have a similar
appearance, we calculate an oversegmentation of the input
point cloud, which takes color and surface orientation into
account to group adjacent points together. We make use of
the oversegmentation method presented by Papon et al. [11],
which is publicly available in the PointCloud Library (PCL)
[13]. The method produces patches which adhere well to



object boundaries as it strictly enforces spatial connectivity
in segmented regions. It works on a voxel representation
of the input point cloud, its accuracy is specified by the
voxel size 7,. As all subsequent steps in the framework also
operate on the voxelized input cloud, this parameter defines
the spatial accuracy of the whole framework. Additionally,
the maximum cluster size r. and three weighting parameters
We, Wy, and wy, controlling the influence of color, the surface
normals and geometric regularity of the clusters, have to be
defined. An example result of the oversegmentation can be
seen in Figure 1.

B. Feature Extraction

For each of the patches generated by the oversegmentation
we calculate a feature vector x, which captures color infor-
mation as well as geometric properties of the patch. The
choice of features is based on the work of Wolf et al. [17],
as their feature vector is also calculated on 3D point cloud
data and very efficient to compute. A list of all used features
is given in Table L.

TABLE I: List of all features calculated for each 3D patch
and their dimensionality. A\g < A1 < Ao are the eigenvalues
of the scatter matrix of the patch.

Feature Dim.

Compactness (Ag)

1
Planarity (A1 — Ao) 1
Linearity (A2 — A1) 1
Angle with ground plane (mean and std. dev.) 2
Height (top, centroid, and bottom point) 3
Color in CIELAB space (mean and std. dev.) 6
Total number of features 14

C. Random Forest Classifier

To calculate label predictions p (y|x) for each class label
y € L={l1,...,lp} and scene patch based on its feature
vector x, we use a standard Random Forest classifier [3]. RFs
have the advantage that they can cope with different types
of features without the need for any further preprocessing
(e.g. normalization) of the feature vector. Furthermore, the
intuitive training and inference procedures can be highly
parallelized and the obtained output for the input vectors
are probabilistic label distributions, which in turn directly
define the unary potentials in the CRF model described in
section III-D.

1) Training: Since the available training data is very
limited, we augment the dataset to train the RFs. Because
the supervoxel clustering method is based on an Octree
representation of the point cloud, it produces slightly dif-
ferent oversegmentation results if we mirror and rotate the
training point clouds about each axis. This way, we create 10
additional oversegmentations per input point cloud to enlarge
the training set.

We adapt the default training procedure for RFs used for
classification, intensively discussed in [3], to our application.
Because the available datasets have a few dominant and

many underrepresented classes (e.g. wall resp. object), we
calculate individual class weights corresponding to the in-
verse frequency of the class labels in the training sets. These
weights are taken into account when the information gain
is evaluated at each split node. We also recalculate the final
label distributions in the leaf nodes of the trees according to
the class weights. Training of each of the ¢ trees in the forest
is finished if the data points in each leaf node cannot be split
up any further with a sufficient information gain, defined by
a threshold h, if less than n data points are left in a node or
if a specified maximum tree depth d is reached.

2) Classification: To classify a feature vector x, it tra-
verses through all trees in the forest—according to the
learned split functions—until a leaf node is reached in each
tree. The final class predictions p (y|x) are then obtained by
averaging the label distributions stored in the reached leaf
nodes during training. After the classifier has been evaluated
for the input scene, the intermediate result is a coarse label
prediction on the patch level, suffering from classification
noise, since the classifier only takes local information from
single patches into account. The next section describes how
we use a Conditional Random Field to smooth and refine the
result on the finer voxel level and exploit learned contextual
class relations to resolve ambiguous label predictions.

D. Dense Conditional Random Field

A Conditional Random Field can improve the labeling
by the introduction of pairwise smoothness terms, which
maximize the label agreement of similar voxels in the
scene. Additionally, more elaborate pairwise potentials can
be defined, such that contextual relations between different
class labels can be modeled in order to further refine the
classification results.

A CRF is defined over a set X = {Xj,..., Xy} of
random variables. The variables are conditioned on the model
parameters @ and, in our particular case, the voxelized input
point cloud P. Thus, each variable X; corresponds to a voxel
v; € P and is assigned a label y; € L. Furthermore, it is
associated with a feature vector f;, determined by P. Note
that this is a different feature vector than the one defined and
used for classification in sections III-B and III-C!

A complete label assignment y € £V then has a cor-
responding Gibbs energy, composed by unary and pairwise
potentials 1); and ;;:

E(y|P,0) = Z?/Jz‘ (y:| P, 0) + szj (yi,y;/P,0) (1)
i i<j
with 1 < ¢, 7 < N. The optimal label assignment y* then
corresponds to the configuration which minimizes the energy
function:
y* =argmin F (y|P,0). 2)
yeLnN

We define the unary potential as the negative log-
likelihood of the label distribution output by the classifier:

Vi (yi|P,0) = —log (p (vilxi)) , 3)



where x; is the feature vector of the scene patch to which
voxel v; belongs. The pairwise potential is modeled as a
linear combination of m kernel functions:

Gij i,y P, 0) = > ™ (yi,y;10) KU (£,£;), (@)

m

where ;™) is a label compatibility function which models
contextual relations between classes in the sense that it de-
fines weighting factors depending on how likely two classes
occur near each other.

For reasons explained later in this section, we limit the
choice of the kernel functions k(™) to Gaussian kernels:

1
K (£, 85) = 0™ exp <_2 (£ — £;)" AU™) (f — fﬂ) ’
(5)

where w("™) are linear combination weights and A" is a
symmetric, positive-definite precision matrix, defining the
shape of the kernel.

For our application on 3D voxels, we define two kinds of
kernel functions, similar to the work of Hermans et al. [6].
The first one is a smoothness kernel, which is only active
in the local neighborhood of each voxel and reduces the
classification noise by favoring the assignment of the same
label to two close voxels with a similar surface orientation:

kY = W exp (— [pi —pj| _ i — nj) 7 ©6)
202 202

where p are the 3D voxel positions and n are the respective
surface normals. 6, , controls the influence range of the
kernel, whereas 6,, defines the degree of similarity of the
normals. The second kernel function is an appearance kernel,
which also allows information flow across larger distances
between voxels of similar color:

O = @ exp PRIl e e} g
202, 262

where 6,; > 0, and c are the color vectors of the
corresponding voxels, transformed to the CIELAB color
space.

In contrast to [6], we define separate label compatibility
functions (™) for both kernels. For the smoothness kernel
we use a simple Potts model: u(!)(y;,y;]0) = Liy,y,]- For
the appearance kernel, however, we use a more expressive
model, since it should capture contextual relations between
different classes across larger distances. Consequently, ;(2)
is a full, symmetric M x M matrix, where all class relations
are defined indvidually. But instead of manually assigning
the compatibility values, we automatically learn them from
training data. More details about the parameter learning for
our CRF model are given in section I1I-D.2.

1) Inference: Because we only use Gaussian kernels to
define the pairwise potentials, we can apply a highly efficient
inference method presented by Krihenbiihl and Koltun [9],
based on mean field approximation. Their method is able to
cope with a large number of variables and allows all pairs
of variables to be connected by pairwise potentials (“dense”
CREF). For our application this has two key advantages: First,

it enables us to define the CRF on the finer voxel level
instead of the patch level while maintaining fast inference
times. Consequently, the CRF improves the labeling on a
finer scale and across patch boundaries, such that it is able to
correct eventual segmentation errors. Second, because of the
dense connectivity, information can propagate across large
distances in the scene. Therefore, the model is able to capture
contextual relations between different classes, helping to
resolve ambiguities in the labeling result.

2) Parameter Learning: To be able to fully exploit the
capabilities of the complex CRF model, its numerous pa-
rameters have to be well defined. Since they are often
depending on each other, this is a difficult task. Recently,
Krihenbiihl and Koltun extended their CRF model with a
learning framework, based on the optimization of a marginal-
based loss function [10]. Their approach captures the param-
eter dependencies by jointly estimating all parameters from
training data. Adapting their framework to our application,
we are able to estimate all linear combination weights as
well as the label compatibility functions, such that the
individual class relations can be learned from training data.
In section V it can be seen that modeling this contextual
information significantly improves the overall performance
of our framework compared to using a simple CRF model
with manually defined parameters.

IV. EXPERIMENTAL SETUP

We conducted all of our scene labeling experiments on the
popular NYU Depth datasets introduced by Silberman et al.
[14], [15]. Both datasets contain thousands of RGB-D frames
from indoor scenes, recorded with a Microsoft Kinect sensor.
In version 1 2,284 and in version 2 1,449 of the frames have
been densely labeled. For both versions, postprocessed data,
where missing depth values have been automatically filled
in using an inpainting algorithm, is provided as well as the
original sensor data. We train and evaluate our framework
on the original data to be independent of any postprocessing
algorithms.

For both datasets, we create 5 splits into training, val-
idation and test sets, where we use 60% for the training,
20% for the validation and the remaining 20% for the test
set. The RF classifier is then trained on the training set and
the CRF parameters are learned on the validation set. In all
experiments, we use the same parameter settings in the whole
framework:

For the oversegmentation, we set the voxel size r, to
1.5cm and the maximum cluster size r. to 30cm. These
settings are a suitable trade-off between speed and accuracy,
as the patches can capture enough information while smaller
objects can still be accurately segmented. In the RF classifier,
we fix the number of trees ¢ and the maximum tree depth d to
20. During training, in each split node 200 feature/threshold
combinations are evaluated. The minimum information gain
h and the minimum number of available points n for a valid
split is set to 0.02 and 10, respectively.

In the CRF model, we only define the parameters spec-
ifying the similarity of color and normal features and the



range on which the kernels operate, all other parameters are
learned from training data. For the smoothness kernel, we
set the range parameter 6, ; = 20 cm and the surface normal
similarity 6,, = 0.05rad. The appearance kernel operates in a
larger range of 6, ; = 1 m and the color similarity parameters
are set to 0.y, = 12 for the L and 6, 4, = 3 for the a and b
channels. For all experiments, we set the number of executed
CREF iterations to 3.

To prove the advantageousness of using a dense CRF
with learned parameters, we evaluate our framework in three
different configurations: First, we compare the labeling result
directly after the RF classifier, without any further processing
by the CRF. Second, we add a CREF, but only use simple Potts
models for the label compatibility terms with manual tuning
of the kernel weights. Finally, we evaluate the performance
using our full CRF model, where we jointly learned the
kernel weights and the full label compatibility matrix from
training data.

V. RESULTS AND DISCUSSION

For the quantitative evaluation, we compare our framework
to other approaches using the common multi-label segmenta-
tion metrics of global accuracy and class average accuracy.
The global accuracy is defined as the overall point-wise
accuracy over the whole test set, whereas the class average
acuracy is calculated as the mean of the main diagonal of
the confusion matrix. All of the given numbers are averaged
values over all 5 splits of the cross-validation.

We compare our work to the methods of [14], [12], [15]
and [2], as well as to the recently presented approach of [6],
which is the most similar and achieves not only competitive
results on the NYU Depth datasets, but also shows fast
processing times.

A. NYU Depth Dataset v

Quantitative evaluation results for version 1 of the NYU
Depth dataset are shown in Table II. First, we trained our
framework to distinguish between 12 semantic classes de-
fined in [14] and directly compare our results to [6]. We can
observe that our RF outperforms their RF implementation
by more than 12% regarding class average accuracy as well
as global accuracy. Apparently, it is beneficial to calculate
the feature vector on patches of 3D data including features
such as the surface normal angles instead of using pixel-
wise features. Enabling the CRF in our framework, without
learned label compatibility terms, boosts the class average
accuracy to 71.9% and the global accuracy to 85.5%. If we
apply the complex CRF model with the fully learned label
compatibility matrix, class average accuracy is similar to the
RF performance, but the global accuracy further increases to
87.8%, outperforming the current state of the art in [6] by a
16%-margin.

To be able to compare our framework also with other
approaches, we add a separate background class for a second
series of experiments on the v1 dataset. This class contains
all of the 1,418 available labels which could not be mapped
to the first 12 classes. Obviously, this setup comes with a

drastically reduced overall labeling performance, since the
background class is mixing hundreds of class labels, whose
different properties can hardly be captured and distinguished
by the feature vector and the classifier. In this configu-
ration, we cannot compete with the method of [12], but
their approach, combining a superpixel MRF with kernel
descriptors and a segmentation tree, takes over a minute per
frame to compute. Again, we achieve better results than [6]
with both of our CRF models, the simpler manual model
performing well with regards to class average accuracy, and
the complex learned model achieving a 23% improvement
in global accuracy.

B. NYU Depth Dataset v2

For the second version of the NYU Depth dataset, we also
conducted two series of experiments. The quantitative results
are presented in Table III and Table IV. The first evaluation
contains 13 different semantic labels, specified by Couprie et
al. [2]. The label set is slightly different from the set used for
version 1, e.g. it contains a particular object class. Besides
[6], which to our knowledge represents the current state of
the art for this dataset, we also compare our results to the
method presented in [2], where a multi-scale convolutional
network is trained to perform segmentation.

TABLE IV: Class and global Accuracy scores for NYU v2
on the small set of structural classes defined by [15].

oh

T . £ .

e £ £ ¢ £ 3
Method O 7 < & O ©
Silberman [15] 68 59 70 42 59.6 58.6
Couprie [2] 873 86.1 453 355 64.5 63.5
Hermans [6] 974 76.1 61.8 409 69.0 68.1
Ours (RF only) 974 73.6 656 511 719 720
Ours (manual) 977 787 677 46.0 725 737
Ours (learned) 96.8 77.0 708 457 72.6 74.1

For 11 out of the 13 class categories, our framework
achieves the best results. Both the manually defined and the
learned CRF model clearly outperform both of the compared
methods, the former achieving 56.9% class average and
63.2% global accuracy, the latter with 55.5% class average
respectively 64.9% global accuracy. Thus, we improve the
current state of the art on this dataset by more than 8 re-
spectively 10% regarding class average and global accuracy.
Some qualitative example results are given in Figure 3.

The second label set on which we evaluated our framework
for this dataset is defined by [15] and only contains 4 rather
structural class labels ground, structure, furniture, and props.
Again, our approach achieves superior results compared
to other methods, where the learned CRF model performs
slightly better in class average accuracy (72.6%) as well as
global accuracy (74.1%) than the manually defined model
with no individual label compatibility terms.

C. Learned Label Compatibilities

To show the effectiveness of the learning approach used
in our framework, Figure 2 depicts an example result of a



TABLE II: Class and global accuracy scores for NYU v1. The upper half shows results for the label set containing 12
classes defined in [14], the results in the lower half have been achieved after adding a separate background class.

=]
= = g
& . z o)
: 2 I 2 5 . . 2 G =
3 £ g8 £ % & 3 £ &7 > 3 £ 3 £ =
Method o /M - O O I o @ £ = B = M O O
Hermans [6] (RF only) 515 416 485 541 883 872 621 500 400 734 696 189 - 57.1  65.0
Hermans [6] 57.6 573 675 582 927 885 566 667 457 820 776 172 - 640 715
Ours (RF only) 625 637 759 399 915 972 652 718 715 867 762 343 - 69.7 79.6
Ours (manual) 66.1 644 876 400 908 979 599 736 750 888 830 354 - 719 855
Ours (learned) 528 626 939 387 84 975 583 715 759 848 86.2 289 - 70.1  87.8
Silberman [14] - - - - - - - - - - - - - 56.6 -
Hermans [6] (full) 507 576 598 578 928 894 558 709 484 817 759 189 135 595 444
Ren [12] 85 80 89 66 93 93 82 81 60 86 82 59 35 76.1 -
Ours (RF) 673 632 804 396 877 960 67.1 677 684 83 755 296 275 65.8 58.0
Ours (manual) 70.7 659 919 406 873 968 619 709 725 87.0 814 297 30.1 682 625
Ours (learned) 535 579 864 340 857 957 61.1 644 601 819 797 181 483 63.6 67.8
TABLE III: Class and global accuracy scores for NYU v2, using 13 different semantic classes defined in [2].
) = oh
- E o0 § 2 2 z —
. & 5 £ £ 5 = & =& = = £ z 2
= =) [} <) = < < G} £ = °
Method 2 3 & &€ 8 & & & E & 5 & E S O
Couprie [2] 38.1 8.7 341 424 626 873 404 246 102 86.1 159 13.7 6.0 362 524
Hermans [6] 684 86 419 371 834 915 358 285 277 718 46.1 454 384 48.0 542
Ours (RF only) 498 244 556 414 925 968 43.6 542 473 586 442 439 319 526 58.0
Ours (manual) 57.1 243 63.0 478 933 975 427 647 502 685 463 526 312 569 632
Ours (learned) 582 374 547 573 928 975 323 498 518 744 432 453 264 555 649

learned label compatibility matrix for the second version
of the dataset. Besides the main diagonal of the matrix,
it can be seen that various other strong relations between
different class labels are identified by the algorithm, the
most noticeable entries being wall/wall-deco, wall/object and
bed/object.
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Fig. 2: Label compatibility terms learned for version 2 of
the NYU dataset. The darker the entry in the matrix (or the
smaller the value), the more likely the two corresponding
labels occur close to each other.

D. Runtime Analysis

In Table V, we give an overview on the approximate
runtimes of the different components of our framework. The
numbers are based on the experiments conducted on our test
machine, an i7 laptop with 8 cores clocked with 2.4 GHz. The
feature calculation for each patch and the RF classification
are fully parallelized, as well as parts of the oversegmentation
stage. For single Kinect point clouds with a resolution of
640 x 480 points we achieve an average processing time
of approximately 500ms. Thus, compared to the similar
approach of [6], our framework is more than twice as fast.

TABLE V: Approximate runtimes of the separate stages of
our framework on our test machine (i7 laptop, 8 x 2.4 GHz),
using the experimental settings described in section IV. On
average, 2 Kinect point clouds per second can be processed.

Processing Stage Runtime
Oversegmentation 200 — 300 ms
Feature extraction ~ 120 ms
RF classification < 5ms
CRE, setup and inference (3 iterations) =~ 100 ms
Total processing time ~ 500 ms

VI. CONCLUSIONS AND OUTLOOK

We introduced a fast semantic segmentation framework
for 3D point clouds, which combines a Random Forest
classifier with a highly efficent inference method for a dense
Conditional Random Field. Furthermore, it incorporates a
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Fig. 3: Example results for version 2 of the NYU Depth dataset. Top to bottom row: Input point cloud, groundtruth, results
after RF, results after full CRF. Labels which are not part of the label set are not shown in the groundtruth. Notice the
inconsistent and therefore missing groundtruth labeling, e.g. for the pole in the second column or the bookshelf in the fourth

column), where our method assigns correct labels.

learning method to jointly estimate all CRF parameters from
training data, enabling the model to capture and exploit the
strong contextual relations between different class labels,
often exhibited especially in indoor scenes. Our method
achieves state-of-the-art results for two challenging datasets
while being more than twice as fast as comparable methods.
This performance paves the way to achieve complex higher
level scene understanding and reasoning, crucial for intelli-
gent autonomous systems.

For future work, we plan to further exploit the learning
capabilities of the dense CRF. Besides the class relations,
we intend to simultaneously estimate all kernel parameters
of the model as well, leading to a purely data driven semantic
segmentation system.
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