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Abstract

In this work, we provide a discriminative framework for online simultaneous seg-
mentation and classification of visual actions, which deals effectively with unknown se-
quences that may interrupt the known sequential patterns. To this end we employ Hough
transform to vote in a 3D space for the begin point, the end point and the label of the
segmented part of the input stream. An SVM is used to model each class and to sug-
gest putative labeled segments on the timeline. To identify the most plausible segments
among the putative ones we apply a dynamic programming algorithm, which maximises
an objective function for label assignment in linear time. The performance of our method
is evaluated on synthetic as well as on real data (Weizmann and Berkeley multimodal hu-
man action database). The proposed approach is of comparable accuracy to the state
of the art for online stream segmentation and classification and performs considerably
better in the presence of previously unseen actions.

1 Introduction
In this paper we deal with the problem of online segmentation of visually observable actions,
i.e., we have to provide labels given the fact that the visual observations arrive stream-wise
on a sequential fashion and we need to decide on the label shortly after they are received,
without having available the full sequence.

The video segmentation has been traditionally treated separately from the classification
step, however, these two problems are correlated and can be better handled considering si-
multaneously the low level cues and the high level models representing the candidate classes
(see e.g., [23], [10]). Following that observation, generative models can build probabilistic
models of actions and can give the posterior of assigning labels to observations. In case
that an unknown activity appears, the posterior probability given the known classes will be
low, so that it will easily signify a sequence of unknown observations. However, genera-
tive models rely on simplifying statistical assumptions for computing the joint probability
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Figure 1: Overview of the proposed method: The action primitives in the considered time
span vote in a 3D Hough voting space (begin-end-class). The SVM receives the votes and
suggests the putative segments. The segments that maximise an objective function compose
the final solution, which is found via dynamic programming.

of the states and the observed features, whereas a more general discriminative model may
better predict the conditional probability of the states given the observed features. As a re-
sult, several researchers have investigated the use of discriminative models of actions such
as Conditional Random Fields [17], Support Vector Machines [10], [25] or random forests
[27], [6]. However, the discriminative models are not without problems, since they cannot
easily handle unknown actions, since they were not part of their optimisation process.

In this work we seek to mitigate the aforementioned limitation of the discriminative
methods, by employing a discriminative Hough transform. By collecting the votes generated
by action primitives we detect putative segments, i.e., the time span as well as the action type
associated to each of them using an SVM. In the following step we use the putative segments
to assign labels to time instances, so that the observations are best explained; to this end we
employ a dynamic programming algorithm. Figure 1 gives an overview of the method.

More specifically, the innovations of the proposed approach are: (a) A generic voting
scheme in 3D space, which is defined by the start point, the end point and the class-specific
label in order to segment the observation stream in an online fashion; (b) a generalised Hough
transform to classify and segment time series online in a way that is decoupled from the
observations. (c) a method to deal with unknown sequential patterns. (e) a discriminative
framework for vote weighting in the aforementioned 3D voting space and (f) a dynamic
programming method for label assignment in linear time.

The rest of the paper is organised as follows: In the next section we survey the related
work. In section 3 we describe the proposed framework, which includes the generation of
hypotheses via voting and the evaluation via dynamic programming. Section 4 describes the
experimental results and section 5 concludes this work.

2 Related work
The simultaneous segmentation and classification of visual or other time series has gained
in popularity recently. Generative models have been used extensively. In [5] a Bayesian
nonparametric approach is presented for speaker diarisation that builds on the hierarchical
Dirichlet process hidden Markov model. Typical approaches that exploit the hierarchical
structure of time series to classify actions, are the hierarchical HMMs [4] or the layered
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hidden Markov model [20]. The semi-Markov model, which explicitly captures the duration
has also been employed [3], [19].

Dynamic time warping and its variations are also popular, e.g., [22] use a feature weight-
ing variation for gesture recognition. [1] proposes a framework for gesture recognition and
spatiotemporal gesture segmentation using a stochastic dynamic time warping combined
with a variation of the Viterbi algorithm. Another line of research is followed by methods
that seek to exploit the co-occurrence of tasks see, e.g., [29], [11]. Our method does not
currently exploit this information, but this depends solely on how we treat the overlapping
tasks that we recognise. In this paper we deal exclusively with the simpler problem of non-
overlapping tasks. Recently a great deal of work was done on deep learning, e.g., convolu-
tional neural networks [12], [14] and restricted Boltzman machines [9]. These methods can
create a feature mapping in an unsupervised way and then they apply standard classification
methods. Our method is agnostic to the employed features and could use these results.

In [2] a discriminative framework was proposed. The sequences were assigned to classes
and segmented into subsequences using conditional random fields. The method requires the
full sequence in advance and cannot operate in an online fashion. Similarly, conditional ran-
dom fields were used in [24], [21]. In [17] hierarchical layers of latent variables were used
to model sub-structures within actions. In [23] a discriminative approach was introduced
under a semi-Markov model framework, and a Viterbi-like algorithm was devised to effi-
ciently solve the induced optimisation problem. The segments that gave the best score were
the selected ones. In [10] a joint segmentation and classification scheme was presented and
it sought to maximise the confidence of the segment assignment. To this end a multi-class
SVM was used and a dynamic programming approach was followed for efficient seeking
of candidate segments and their evaluation. In [25] latent labels and state durations were
optimised in a maximum margin approach. The results were very promising, but the au-
thors made the assumption that the video sequences contain only instances of classes that
were previously learned. These schemes have problems if segments belonging to previously
unseen classes appear between the known ones because the dynamic programming scheme
becomes inapplicable. A possible solution could be to model the content that does not be-
long to any of the known categories as a separate class, however that approach would not
handle properly the unknown sequences that might appear.

Of some relevance to our method is the anomaly detection in time series. In contrast to
segmentation of time series, anomaly detection is the identification of unknown patterns, i.e.,
behaviours that deviate from normal given the previously seen data. [15] used the one-class
SVM discriminative model to detect novel observations and outliers after transforming the
time series data to a vector, which is the required input to the SVM. Such approaches can be
used offline, where the whole sequence is known. [13] proposes an on-line (causal) novelty
detection method capable of detecting both outliers and regime change points in sequential
time-series data using a metric based on extreme value theory. This method is more related to
change point detection methods used (when a signal changes), e.g., in EEG analysis rather
than to classification of more complex patterns like actions or gestures. Our approach is
different from the above, since we do not care about the detection of abnormal sequences;
our primary goal is to segment online (eventually with a short delay) some known sequential
patterns, which could be occasionally interrupted by unknown or uninteresting sequences.

Related to our approach is the Hough transform. In [16] a discriminative Hough trans-
form was used for object detection, where each local part cast a weighted vote for the possible
locations of the object center. It was shown that the weights can be learned in a max-margin
framework, which directly optimises the classification performance. Its resilience to noise
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and the fact that multiple objects can be present simultaneously make the Hough transform
a very attractive option, which can be generalised to time series and therefore to gesture and
action recognition. We propose a discriminative Hough transform for time series analysis,
where motion primitives are used instead of local descriptors. We deal with concurrent seg-
mentation and classification in time-series instead of object detection in images where the
voting is different. We vote in a 3D space which is defined by the time span and type of
segment (begin point, end point and class label) and then use dynamic programming for the
final label assignment. Another interesting approach for the problem of action recognition
using Hough was presented in [27], where the action segmentation was coupled to the action
positioning problem for a single actor. By considering features such as optical flow intensity
and position, a Hough forest was built and then used to cast votes in real scenarios. Com-
pared to that work we decouple the position estimation problem from the classification and
segmentation problem, which reduces the dimensionality of the voting space. In [27] the
actor was represented by a rectangle, while it is not clear how such a coupled framework
would generalise for more complex problems involving high dimensional models (e.g., mul-
tiple actors, skeleton models, region descriptors). Hough transform was also used in [28].
However, it used voting for pose estimation unlike our work, which uses voting for actions.

3 Proposed framework

3.1 Hypotheses generation via discriminative voting

In the discriminative voting framework we seek to identify simultaneously (a) the instances
of classes C of sub-sequences in time series data, (b) the location x of the class-specific
subsequence, in other words the begin and the end time point in the data.

Let ft denote the feature vector observed at time instance t and let S(C,x) denote the
score of class C at a location x (the (C,x) is a cell in a 3D voting space). The implicit
model framework obtains the overall score S(C,x) by adding up the individual probabilities
p(C,x, ft , lt) over all observations within a time window (lt indicates if observations in time
t belong to the currently examined sliding window), i.e.,:

S(C,x) = ∑
t

p(C,x, ft , lt) = ∑
t

p(ft , lt)p(C,x|ft , lt) (1)

We define M action primitives, which result from clustering of the visual observation
vectors ft . Let Pi denote the i-th action primitive. By assuming a uniform prior over features
and time locations and marginalizing over the primitive entries we get:

S(C,x) = ∑
t

p(C,x|ft , lt) = ∑
i,t

p(Pi|ft , lt)p(C,x|Pi, ft , lt) (2)

By observing that the primitives Pi depend only on the observed features ft and not
on the time location lt that they appear, we can simplify p(Pi|ft , lt) to p(Pi|ft). Similarly,
p(C,x|Pi, ft , lt) depends only on the matched primitive Pi and lt and simplifies to p(C,x|Pi, lt).
Therefore we can write:

S(C,x) = ∑
i,t

p(Pi|ft)p(C,x|Pi, lt) = ∑
i,t

p(Pi|ft)p(x|C,Pi, lt)p(C|Pi, lt) (3)
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The term p(Pi|ft) can be calculated by applying Bayes rule assuming uniform distribution
for ft : p(Pi|ft) ∝ p(ft |Pi)/p(Pi). We use Gaussian mixture models (GMM) to represent the
distributions of the observation vectors, and to express one primitive by one component of
the GMM. The numerator can be simply obtained by evaluating the respective component of
the GMM, while the denominator is given by the associated prior.

Returning to (3) the term p(x|C,Pi, lt) gives the temporal distribution in the locations
x given the class C and the location lt of the primitive Pi. This can be modelled from the
training samples. The third term is the weight of the primitive Pi emphasizing how confident
we are that the primitive Pi at time t matches the class C as opposed to another class. If we
assume that the p(C|Pi, lt) is invariant to the location lt of the primitive we can simplify the
term to p(C|Pi, lt) = p(C|Pi) ∝ p(Pi|C)/p(Pi). The weight is defined independently for each
primitive, so we refer to it as the naive-Bayes weights.

Our voting framework can be the basis for a discriminative voting scheme, for time series
data. It is inspired by the framework presented in [16], which dealt with object detection. We
can use maximum margin optimisation if we observe that the score S(C,x) is a linear function
of p(C|Pi). By simplifying p(C|Pi, lt) = p(C|Pi) and by considering Eq.(3) we have:

S(C,x) = ∑
i,t

p(Pi|ft)p(x|C,Pi, lt)p(C|Pi) = ∑
i

p(C|Pi)∑
t

p(Pi|ft)p(x|C,Pi, lt)

= ∑
i

wi×ai(x) =W T
c A(x)

(4)

where AT = [a1a2...aM] (hereafter mentioned as the activation vector), and ai is given by:

ai(x) = ∑
t

p(x|C,Pi, lt)p(Pi|ft) (5)

The weights W T
c are class-specific and we notice that they can be optimised in a discrimina-

tive fashion to maximise the score for correct segmentations and labels. The discriminative
nature of the optimisation may give much better results compared to the voting scheme based
only on the estimation of p(C|Pi). For a given training sequence that is observed we set the
respective class-specific labels in the respective locations xi, i.e., at the bins that correspond
to the correct begin/end points. The rest of the locations are defined to belong to an "idle"
class. In other words, we define the ground truth labels S(C,xi) for all possible locations xi
within a time window. For each of the locations xi we need to find the activation vectors
A(xi), which are calculated by using Eq.(5). Given the labels S(C,xi) and the respective
A(xi) we calculate the weights Wc using multiple one-versus-all binary SVM settings.

In testing we vote in the 3D space using Eq.(4) and then we apply the SVMs in a slid-
ing time window to get the putative segments, considering only the segments that collected
enough votes. As may happen in many cases, the local maxima in the Hough parameter
space may be the result of noise and thus may not correspond to a real segment. Therefore
an additional evaluation step is normally applied to eliminate some false positives using an
HHM-like likelihood function. An illustrative example of the proposed hypotheses genera-
tion process and the additional evaluation step is shown in Fig.3(b)-(c) in the context of the
proposed algorithmic steps, presented in Fig.1.

Generally we cannot exclude the possibility of previously unseen observations or pat-
terns. In dynamic scenes it is almost certain that at some point we will come across some
observations that will not be explainable by the existing models. Assigning a specific class
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label to represent all the possible unknown classes is not the best solution, since the related
model has to be really complex to cover the variety of possible observations and most im-
portantly these observations are not known in advance.

3.2 Hypotheses evaluation via dynamic programming
The processing described in the previous section results into, say, K putative segments; K is
many orders of magnitude smaller than the number resulting from brute force by considering
all possible combinations of classes and begin-end points. However, these K segments are
typically overlapping and belong to different classes. Their possible combinations are O(K!)
which can still be high and may not be evaluated exhaustively, even by using evolutionary
algorithms as we noticed. We also noticed that in most of the cases, the discriminative
framework proposes, among others, segments that are close to the ground truth. That fact
motivated an approach that seeks to consider only the proposed segments, so that they can
best explain the sequence of observations on the timeline. If for parts of the time line there are
no proposed segments these parts remain unassigned and account for unknown observations.

We merge the proposed segments that overlap and have the same label, but typically
there are also overlaps between segments of different labels, which compete for the same
time windows. Assuming only one label for each time slot, we propose a variation of the
Viterbi algorithm for linear-cost label assignment with regard to the number of input frames.

We define the likelihood δt , which is calculated after the optimal assignment of time in-
stances to classes. The optimal sequence of classes for a time segment t=1..T , which contains
overlapping candidate segments of different labels is given by the path ψt = C1,C2, ...,Ct .
The initialisation of the likelihood δt for t=1 is then given by:

δ1(C1) =
M

∑
i=1

p(f1|Pi) · pb(Pi|C1) (6)

At time t, which accounts for the first t time instances we have:

δt(Ct) = max
Ct−1
{δt−1(Ct−1) ·A(Ct−1,Ct)} ·

M

∑
i=1

p(ft |Pi)p(Pi|Ct) (7)

where

A(Ct−1,Ct)=


M
∑

i=1

M
∑
j=1

ptr(Pi,t−1,Pj,t |Ct−1)p(ft−1|Pi,t−1,Ct−1)p(ft |Pj,t ,Ct) i f Ct =Ct−1

M
∑

i=1

M
∑
j=1

pe(Pi|Ct−1)p(ft−1|Pi,t−1,Ct−1)pb(Pj,t |Ct)p(ft |Pj,t ,Ct) i f Ct 6=Ct−1

(8)
The first branch of Eq.(8) assumes no switching between different labels from t-1 to t.

Therefore the transition likelihood ptr(Pi,t−1,Pj,t |Ct−1) is involved, while the class remains
the same (Ct−1). In time t-1 and t the primitives Pi and Pj are observed respectively, as
indicated by the subscripts. There is no hard assignment of primitives, so all transitions are
evaluated and weighted by the respective observation likelihoods.

The second branch accounts for switching between different labels, so the termination
likelihood pe is involved for label Ct−1. A new segment with different label begins in t,
so the begin likelihood pb for the new class label Ct is involved. These are weighted by the
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respective observation likelihoods given the classes Ct and Ct−1 and the respective primitives.
Again all possible combinations are evaluated.

In Eq.(7) only the right factor needs to be evaluated for each class, while the left part was
calculated in the t-1 step. The overall cost of the calculation is linear and is applicable for
online applications. To retrieve the sequence of assignments we keep track of the argument
that maximised (7) through the array ψt , which is given by:

ψt(Ct) = argmax{
Ct−1=1..L

δt−1(Ct−1) ·A(Ct−1,Ct)} (9)

An illustrative example of the hypotheses evaluation process is shown in Fig.3(d) for
the two experimental configurations that are provided, resulting the final classification and
segmentation action segments. The proposed dynamic programming algorithm differs from
the typical Viterbi algorithm because the transition between labels on the time line has to
be treated differently in the case that the same segment continues (label remains the same -
first case in Eq.(8)) than the case that a new segment begins (label changes - second case in
Eq.(8)).

4 Experimental results
To verify the validity of our method we have experimented with synthetic as well as a real
dataset from the field of visual action recognition. For our comparisons we implemented
(using the CVX [8]) the optimisation scheme that maximises the confidence for segments
similarly to [10] (hereafter denoted as MaxConfidence or MC) and the scheme that max-
imises the overall score similarly to [23] (hereafter denoted as MaxScore or MS); these are
state of the art methods that do online segmentation, like our method does.

Synthetic data We generated a dataset of 2D sequences. We created randomly ten HMM
models, each composed of up to three different states, by random definition of means, co-
variances, priors and state transitions. Then for each of them we performed sampling and
we produced 100 sequences of length between 450 and 750 each. These sequences were
concatenated at random order to form bigger sequences consisting of one instance per class.
Given the dataset we investigated two different settings. To make our method comparable
to existing work, we initially made the assumption of a multiclass problem, where all the
knowledge was given in advance to the system, i.e., no instances stemming from unknown
latent classes appeared. This implies that a label from the known set of labels had to be
assigned to every frame. We used 50% of the sequences for training and the rest for testing.
Fig.2a presents per class classification accuracies of our method, MC and MS, on a frame-by-
frame basis. The size of the sliding window was defined by the maximum action length. Our
method shows similar or higher accuracy, i.e., 89.44% vs. 87.65% and 81.71% of MC and
MS respectively. Our method is agnostic about the existence of instances stemming from un-
known sequential patterns; therefore small gaps falsely assigned to novel observations may
appear. This is the largest source of error, i.e., segments that have actually larger duration
are detected as shorter because the longer ones are sometimes not suggested as putative seg-
ments. On the contrary, MC and MS assume that all observations are known and that there
are no gaps between the putative segments. Next, we assumed that some of the observed
actions resulted from unknown latent classes. MC and MS are not able to classify instances
of previously unknown actions; therefore, to make a fair comparison we trained an HMM for
each known action and we checked the likelihood of each segmented sub-sequence using the
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(a) Synthetic dataset

(b) MHAD dataset

(c) Weizmann dataset

Figure 2: Classification accuracy (%) per class for the three experiments when training with
the full dataset (left) and with a subset (right). Class 0 denotes the novel observations.

respective model. For low likelihoods we classified the actions as unknown. We excluded the
instances of five classes from training and we learned the rest. Our method gave promising
results, exhibiting accuracy 96.16% (assignment of instances from 6-10 to 0 were considered
true). The best results for MC and MS were 52.42% and 37.34% respectively, and were ob-
tained by using a threshold of −10−7 for length-normalised log likelihood and M=30. Their
inferior performace can probably be attributed to the requirement for continuous labeling of
the whole timeline, which inevitably couples together the actions and necessitates a subop-
timal postprocessing step to detect unseen actions; in contrast, our method is optimised to
classify known and detect unknown actions without that constraint.

Berkeley dataset. The next experiment is related to visual recognition of actions, which
involve the whole human body. To this end we use the Berkeley Multimodal Human Ac-
tion Database (MHAD) [26], which consists of temporally synchronised and geometrically
calibrated data. The dataset contains about 660 action sequences which correspond to about
82 minutes. In the original dataset the different actions were provided as segments. For
the purpose of identifying actions in continuous data we concatenated those videos. We did
not consider the action sit down/stand up as a separate action, but as the composition of the
actions sit down and stand up; this apporach is justified by the continuous recognition that
we do. Therefore we actually classified only ten different actions. All available 3D skeleton
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joints were used to build our representation of human motion for each frame. We used the
3D orientation of each joint with respect to its ancestor in the kinematic skeletal chain based
on quaternions. In addition, the 3D coordinates of each skeletal joint with respect to the hips
joint were computed for each mocap record. Finally, the distance of the hips joint to the
ground plane was also incorporated to the feature set for each frame. The last two subsets
of our feature representation were normalised for each actor of the dataset, given the total
length of the skeletal chain. The feature vector had 220 dimensions 103 representing all the
joint angles and 117 representing all the joint positions. We trained with the first 7 subjects
and tested with the last 5 ones as in [26]. Each subject repeated the same actions 4 times.
Fig.2b gives the per class accuracy. Our method gave overall accuracy 79.58% compared to
76.22% of MC and 82.46% of MS when training with all classes. Essentially all methods
gave comparative results. For reference purposes, we mention that the best results reported
in [26] using the same skeletal data was 79.93% using use kernel-SVM with the χ2 kernel
for classification. However, the setting was different, i.e., unlike ours, the classification was
performed on segmented videos and the sit down/stand up action was treated separately. We
then examined the effect of unknown sequences, by using the same postprocessing step as
in the synthetic experiment to make the competing methods comparable to ours. We trained
with classes 6-10 and then tested using the same data as in the previous experiment. Illustra-
tive experimental results are demonstrated in Fig.3. Our method had an overall accuracy of
89.04%, outperforming MC with 74.25% and MS with 75.14% (threshold −10−5, M=40),
which verifies the merit of the proposed method. Moreover, the supplemental material ac-
companying the paper 1 demonstrates results based videos compiled based on the Berkeley
dataset, in the same experimental configuration as described in Fig.3.

Weizmann dataset Finally we used the classification database of the Weizmann dataset
[7], consisting of 9 actors performing 10 different actions. Based on the aligned binary fore-
ground masks that are also available in the dataset, we computed the Zernike moments up to
order 20 [18]. We exploited only the even polynomials (excluding zero-based polynomials)
and concatenated the resulting amplitude and phase values resulting in feature vectors of size
220. In the following, we applied a GMM-based clustering to build a dictionary of M=30
motion primitives that represent the notion of spatiotemporal keywords in our framework.
As in [10] we concatenated each set of videos of a subject into a single longer sequence;
consequently, we composed 9 long videos of contiguous actions and used 5 of the videos for
training and 4 for testing. The results per class are in Fig.2c. We used threshold= −10−5.
Training with all data yielded 90.82%, 67.64% and 79,31% for our method, MC and MS
respectively; partial training with classes 1-5 yielded 89,23%, 69.34% and 65.14% for the
three methods. That confirms the results from the previous experiments. For reference pur-
poses we mention that in [10] 94% accuracy was reported for the MC, which is justified by
the use of spatiotemporal features, while in our experiments we used only spatial features.

5 Conclusion

We presented a framework for simultaneous segmentation and classification of sequential
data interrupted by unknown actions and we have applied it on synthetic and visual action
streams. Under a "closed world" assumption, our method performed similarly or better than
the competing discriminative methods. When the actions of interest were interrupted by pre-

1http://youtu.be/LxIiTFDavpg
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viously unseen actions our method was still able to classify them and detect the unknown
ones. MaxScore and MaxConfidence gave inferior performance mainly due to the fact that
they enforce continuity of labeling and the inevitable post-processing proved to be relatively
ineffective. To knowledge, our discriminative method is the first one for online simultaneous
segmentation and classification having this property.

(a) Ground truth action segments and classes.

(b) Putative action segments based on hypotheses generation (prior to likelihood-based evaluation).

(c) Putative action segments and their classes based on hypotheses generation.

(d) Final segmentation and classification of actions based on hypotheses evaluation.

(e) Key-frames of the recognised actions are presented in temporal sequence, for each of the test videos.

Figure 3: Sample results from the Berkeley dataset. Actions 1−10 are illustrated as color-
coded segments in figures (a) - (d). Horizontal axis represents the time-line in frames. On
the left column, modeling and training of the proposed method is applied using all actions
1−10, performed by subjects 1−7. Testing is applied on an image sequence which contains
each action once performed by subjects 8−12. The final result is illustrated in the left sub-
figure of (d), matching the ground truth in (a). On the right column, modeling and training
using actions 6− 10 for subjects 8− 12 was performed. A test sequence was compiled
concatenating all available actions once, from subjects 1−7. The final result, shown in right
sub-figure of (d), demonstrates the segmentation and classification of the modeled actions in
the context of the unmodeled actions 1− 5, which are considered as unknown in that case,
thus no recognition results are present during the first five actions. In (e), corresponding
key-frames of the recognised actions are illustrated. (The figure is best viewed in color.)
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