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Abstract. Object detection and localization in an image can be achieved
by representing an object as a Histogram of Oriented Gradients (HOG).
HOGs have proven to be robust object descriptors. However, to achieve
accurate object localization, one must take a sliding window approach
and evaluate the similarity of the descriptor over all possible windows in
an image. In case that search should also be scale and rotation invari-
ant, the exhaustive consideration of all possible HOG transformations
makes the method impractical due to its computational complexity. In
this work, we first propose a variant of an existing rotation invariant
HOG-like descriptor. We then formulate object detection and localiza-
tion as an optimization problem that is solved using the Particle Swarm
Optimization (PSO) method. A series of experiments demonstrates that
the proposed approach results in very large performance gains without
sacrificing object detection and localization accuracy.

1 Introduction

Detecting objects in real-world scenes depends on the availability of local im-
age features and representations that remain largely unaffected by illumina-
tion changes, scene clutter and occlusions. A Histogram of Oriented Gradients
(HOG) [1] is a descriptor that is computed on a dense grid of uniformly spaced
cells and employs overlapping local contrast normalization for improved accu-
racy. The robustness of HOGs has made them a quite popular image patch/object
representation. However, object localization based on HOGs requires the evalua-
tion of the similarity of a reference HOG to the HOG computed in each and every
possible placement of a window that slides over the image. Additionally, HOGs
are scale and rotation dependent representations. Thus, if one needs to detect
and localize objects in a scale and rotation independent way, an explicit and
exhaustive consideration of all these search dimensions needs to be performed.
This exhaustive search in a multidimensional space becomes computationally
prohibitive even for very small image sizes. To overcome this, a variety of meth-
ods have emerged [2–4]. Typically, they use heuristics that reduce the number of
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HOG similarity evaluations in an image by searching only over a coarse grid of
candidate object positions or by using local optimization methods. These meth-
ods sacrifice location accuracy to gain speed and, thus, have increased risk of
inaccurate localization or even object miss.

In this paper we propose a method to perform accurate object localization
in any scale and rotation, avoiding the above drawbacks. We start by propos-
ing a variant of an existing [5], rotationally invariant, HOG-based descriptor.
The proposed descriptor relaxes the need of considering rotated versions of it.
Furthermore, we formulate object localization as an optimization problem that
seeks for the image position and object scale that maximizes the match between
the rotationally invariant HOG descriptor and its localization in the image. This
optimization problem is solved using the Particle Swarm Optimization (PSO) [6]
algorithm. The PSO is a heuristic, evolutionary optimization technique, inspired
by search mechanisms employed by certain biological species. Large populations
of particles (i.e., candidate solutions) are evolved in iterations called genera-
tions to eventually land on the global maximum of the function to be optimized.
We demonstrate experimentally that, compared to the sliding window search
approach, the proposed approach decreases dramatically the number of descrip-
tor/image similarity evaluations that are needed to localize an object in an
image.

2 Related Work

In order to reduce the number of HOG descriptor comparisons required for
object localization, many methods have been proposed. Typically, these consist
of computing and evaluating the descriptor only over a coarse, limited number
of window locations where the object is more likely to be located and over fixed
window sizes.

Zhu et al [2] used AdaBoost to select the most relevant windows from an im-
age training set, over 250 random windows per image. In addition, they adopted
the integral image representation for a faster formulation of their HOG descrip-
tor variant. This representation of images used in HOG strips the Gaussian
mask and trilinear interpolation off the construction of the HOG for each block.
In [2], the L2-norm used by Dalal and Triggs [1] is replaced by the L1-norm be-
cause it is faster to compute with integral images. Overall, near real-time object
localization is obtained but with reduced descriptor robustness. Additionally,
the search window locations are heavily depended of the training image set. A
similar method [7] uses sparse search at runtime to locate parts of the object
in search and then improves the localization by applying a pre-learned Partial
Least Squares regression model, followed by an dense search around the approx-
imate locations of the object. Other methods [3, 8–11] employ image pyramids
or coarse-to-fine hierarchical schemes. Essentially, detailed searches at higher
resolutions are focused on areas where there is evidence for the existence of an
object from coarser searches in lower resolutions. This strategy reduces the to-
tal number of descriptor evaluations. As an example, Zhang et al [3] applied a
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multi-resolution pyramid framework on HOGs to produce better performance
over the method of [1]. Interestingly, this work demonstrates that the predefined
hierarchy performs better compared to the one that is automatically selected by
AdaBoost. The method searches each image at one fourth of the original reso-
lution with a constant window size in a dense pattern, identifying regions of the
image not containing the reference object. These regions are then excluded from
search in finer resolutions and window grids. The resulting method achieves good
localization accuracy and faster execution compared to the original HOG. Still,
the method does not consider different object orientations and scales, excluding
this way a number of interesting search dimensions. The method proposed by
Lampert et al [4] uses a branch-and-bound (B&B) search to find the globally
maximal region of the search space - the rectangular bounding box enclosing the
target - faster than the exhaustive search. This method reduces the computa-
tional complexity from O(n4) to O(n2) for an arbitrary rectangle bounding box,
by trading off accuracy for fast convergence.

The PSO based object detection approach proposed in this work exhibits
remarkable performance gains over existing sliding window approaches. At the
same time, localization accuracy remain largely unaffected. Due to its nature,
PSO provides continuous solutions a fact that is particularly important for es-
timating the true scale and orientation of an object. As a result, objects are
localized in subpixel accuracy and at a fraction of the time needed by the other
methods. In addition, PSO search operates without any previous knowledge re-
garding the possible location of objects and requires the adjustment of only very
few parameters.

3 The proposed method

A HOG is not a rotation invariant representation. Therefore, when used in ob-
ject detection tasks, it can only handle objects that are observed at a certain
orientation. To overcome this limitation, a new variant of the HOG descriptor
was recently proposed. The so called Rotation-Invariant Fast Feature (RIFF)
descriptor [5] is based on a HOG computed at a circular support area and uses
an annular binning to achieve orientation invariance. We study the use of a
RIFF like descriptor in object detection in conjunction with the Particle Swarm
Optimization (PSO) [6]. Scale invariance is not easily achievable through modi-
fications of the HOG descriptor. Instead, the capability for scale invariant search
for objects is delegated to the employed optimization technique. Essentially, the
detection of a reference object in an image amounts to searching for the image
position and object scale that maximizes the match between the rotationally
invariant reference object descriptor and the descriptor computed at that image
part. The degree of match is quantified by employing the Quadratic-Chi his-
togram distance [12] between the reference object and the candidate image area.
In PSO terms, the Quadratic-Chi histogram distance between a reference HOG
and the HOG computed at an image region constitutes the objective function
to be minimized.
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Fig. 1. The RIFF descriptor in comparison with the proposed descriptor variation. The
proposed descriptor does not quantize the patch gradients and does not decompose an
annulus to sectors.

3.1 Rotation invariance

The original HOG descriptor performs well with objects that are observed at a
certain orientation and scale. In order to handle objects that are presented in ar-
bitrary orientations a rotationally invariant object descriptor is required. There
are two prominent techniques for achieving rotation invariance. The first [13]
treats rotation as a circular shift and uses the magnitude of the Fourier trans-
form, often not sufficiently robust to view point variations. The second [14] uses
steerable filters and computes a descriptor for a number of discrete orientations
of the filter.

The Rotation Invariant Fast Features (RIFF) descriptor [5] is a recent ap-
proach that leverages on the proven methods of SIFT [15] and HOG [1] and
provides robustness and rotation invariance. The RIFF descriptor consists of con-
centric annular cells, applied to image interest points extracted by the FAST [16]
detector. Typically, RIFF descriptors consist of four annular cells with the largest
diameter being equal to 40 pixels. In each annulus, the image gradient orienta-
tions are computed using the centered derivative mask [−1, 0, 1] and rotated
to the proper angle according to the Radial Gradient Transform [5] to achieve
rotation invariance. The resulting gradients are quantized with respect to their
direction for improved performance. Additionally, at each pixel, a local polar ref-
erence frame is created for describing the gradient from the radial and tangential
directions of the center of the pixel, relative to the center of the descriptor. The
coordinates of the gradient in the local frame of reference are invariant to ro-
tation for the given descriptor center. A binning technique is also employed as
in CHOG [17]. Computational performance is further improved based on sparse
gradient sampling.

In this paper we use a variant of the RIFF descriptor, adapted for whole
object recognition. A single circular descriptor is computed that encloses the
reference object. The descriptor for a circular image region is computed by first
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calculating the edge gradient scale and orientation with a centered derivative
mask [−1, 0, 1]. We use a signed orientation gradient spanning from -π to π. As
in the original RIFF, we define four circular, concentric, non-overlapping annuli.
The radii of the circles defining the annuli are computed so that the resulting
annuli have the same area. To achieve rotation invariance we rotate the gradients
according to the Radial Gradient Transform (RGT) [5] without applying any
direction quantization. The final descriptor consists of a histogram of 72 discrete
bins (4 annuli × 18 gradient directions, each). To avoid boundary effects, bilinear
interpolation is used to distribute the value of each gradient sample into adjacent
histogram bins. Additionally, each pixel’s vote in the histogram is weighted by
the edge gradient scale. To account for changes in illumination and contrast,
a local normalization is performed between cells using the L2-norm followed
by clipping the maximum values by a threshold of 0.2 and re-normalizing as
in [15]. The final descriptor is the normalized, concatenated rows of the resulting
histogram.

3.2 Descriptor distance measure and matching

Since RIFF is a direct representation of a histogram we can use distance mea-
sures that are well suited to histogram comparison. We chose the Quadratic-Chi
(Q-Chi) histogram distance [12] in order to reduce the effect of differences caused
by bins with large values and because of its performance advantages over the
simple χ2 method. According to [12], let P and Q be two non-negative bounded
histograms. Let also A be a non-negative symmetric bounded bin-similarity ma-
trix such that each diagonal element is bigger or equal to every other element
in its row. Finally, let 0 ≤ m < 1 be a normalization factor. A Quadratic-Chi
histogram distance QC between P and Q is defined as

QCA
m(P,Q) =

√√√√∑
ij

(
(Pi −Qi)∑

c (Pc +Qc)Aci
m

(Pj −Qj)∑
c (Pc +Qc)Acj

mAij

)
. (1)

The normalization factor was set to m = 0.9.
Concerning descriptor matching, we experimented in comparing the descrip-

tor produced by the original image with the descriptors produced by sub-sampled
instances of the same image in different sizes, using the nearest neighbor sam-
pling method. Using the proposed descriptor design, we concluded that descrip-
tors produced from the same image but at different scales typically differ sub-
stantially with respect to their Q-Chi distance. More specifically, the nearest
neighbor subsampling of an image gave progressively greater distance as the dif-
ference in size was increasing. Using bilinear interpolation to match the size of
the sub-sampled instances with the size of the original, higher resolution image
resulted in much lower influence from scale difference. Finally, using bi-cubic
interpolation instead of bi-linear, improves further the results. So, it turns out
that it is of importance to match the resolution of the larger image patch by up-
sampling the smaller image patch using bi-cubic interpolation prior to computing
the descriptor histogram.
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3.3 The PSO optimization algorithm

Particle Swarm Optimization (PSO) is an evolutionary technique for the op-
timization of nonlinear, multidimensional and multimodal functions that is in-
spired by social interaction. A population of agents, called particles is randomly
initialized inside the objective function’s space. Particles move in search of the
function’s global maximum for a given number of iterations called generations.
Each particle is associated with the evaluation of the objective function at its
location. Each agent’s velocity in the parameter space is determined by three
components: a random one, a local one that directs the particle towards its own
best position and a global one that directs the particle towards the globally best
position. More specifically, the velocity vti for particle i in generation t is given
by

vt+1
i = K

(
vti + φ1R1(pbti − xt

i) + φ2R2(gbt − xt
i)
)
, (2)

where pbi is each particle’s best position so far, gb is the best position over the
whole particles population, xi the current position of each particle and R1, R2

are random numbers in the range [0..1]. Additionally, the so called constriction
factor K is equal to

K =
2

|2− ψ −
√
ψ2 − 4 ∗ ψ|

, ψ = c1 + c2, (3)

with c1 + c2 = 4.1 as suggested in [18]. As the swarm evolves, the agents are
expected to locate the global maximum of the objective function and keep os-
cillating around it. The vast percentage of the computational load of PSO is
associated to the evaluation of the objective function for each particle in each
generation. Thus, the product of the number of generations to the number of
particles is a good indication of the computational load for that PSO parame-
terization.

Although in principle there are no guarantees for convergence, it has been
demonstrated that PSO is able to effectively cope with difficult multidimensional
optimization problems in various domains, including computer vision [19].

3.4 Employing PSO for HOG-based object detection

Object detection is formulated as a search task across the three-dimensional
parameter space formed by all possible 2D translations and scales at which an
object might be present in an image. More specifically, the PSO particles are
initialized randomly inside this three-dimensional search space. Each particle
corresponds to a single 2D position and scale of the descriptor in the image. The
boundaries of this space are determined by the minimum and the maximum
scale of the window and the size of the image. To account for partially clipped
objects near image borders, the image is padded by mirroring its contents near
the edges for 10 pixels. PSO seeks to minimize an objective function which, in
our case, is the Q-Chi distance (Eq.1) between the reference object descriptor
and and a candidate image window.
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4 Experimental results

Several experiments have been performed to assess quantitatively the proposed
approach. More specifically, the goal of the experimentation was to evaluate the
efficiency and the accuracy of object localization using the proposed technique.
The dataset used to evaluate the proposed method is the one used by Tacacs [5]
for the evaluation of the RIFF descriptor and consists of images of music CD
covers in arbitrary rotation and distance from the camera with partial occlusions
and with different backgrounds. The dataset includes 50 different CDs observed
in 10 different backgrounds, resulting in a data set of 500 images. For each CD,
the clear cover image is provided, based on which the reference descriptor is
computed.

In order to evaluate the performance gain of the proposed method, we first
produced reference data by locating the position and scale of the window that
minimizes the QC distance metric. This was achieved by performing an exhaus-
tive search experiment where all possible object positions and scales were eval-
uated. To cope with the computational requirements of this exhaustive search
experiment, the original images were resized to 320×240 by halving their height
and width. With respect to scale, each object has been searched at a minimum
window of 60 × 60 and at a maximum window of 240 × 240, resulting in 180
different window sizes that were also exhaustively considered.

Next, we ran the proposed method for a variety of PSO parameterizations
(number of particles and number of generations). For a particular PSO parame-
terization our approach reported the position and scale at which an object exists
in an image. The localization accuracy of such an experiment was quantified by
measuring the F -score (i.e., is the harmonic mean of precision and recall) of the
result of our approach and that of the exhaustive experiment. This was repeated
for all images. The obtained F -scores for all 500 images are averaged to come up
with a single number quantifying the localization accuracy for a certain PSO pa-
rameterization. We also measured the accuracy obtained by the sliding window
approach where the window displacement step and window size step is equal
to D > 1 pixels. Essentially, the exhaustive experiment corresponds to D = 1
and corresponds to approximately 3, 500, 000 objective function evaluations per
image. For comparison, running the same experiment with D = 40 requires as
few as 140 objective function evaluations per image.

Figure 2 summarizes the results obtained from all related experiments. The
vertical axis of the plots corresponds to the obtained F -scores. The horizontal
axis corresponds to the parameter D. The dashed line corresponds to the average
F -score of the sliding window approach as a function of D. As explained earlier,
each point in the plot is the average of the F -scores obtained in 500 object
searches.

As expected, the exhaustive approach achieves an average F -score of 1 when
D = 1. As D increases, the average F -score also decreases, reaching the value of
0.25 for D = 40. The same plot demonstrates the performance of the proposed
approach for a large variety of numbers of particles. For a particular particle
count, the number of generations was calculated so that the computational bud-
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Fig. 2. The mean object localization accuracy with respect to various parameteriza-
tions of the proposed algorithm and the exhaustive search approach. The horizontal
axis represents the displacement D in location x, y and scale dimensions for the sliding
window algorithm. For the proposed method, different plots correspond to different
particle numbers. See text for a detailed description.

get required by our method does not exceed the budget of the corresponding
exhaustive approach with displacement D. Thus, the intersection of these plots
with e vertical line corresponds to algorithms that have the same computational
budget and, therefore, require the same execution time. For some particle counts,
the curves do not extend up to D = 40 because for F values above a threshold,
the above mentioned calculation returns zero PSO generations.

As it can easily be verified, the proposed approach keeps an average F -
score above 0.9 for all considered computational budgets. This is true even for
a budget as low as 140 objective function evaluations (D = 40). Thus, when
limited computational resources are devoted to object detection, our approach
results in more than 3.5-fold improvement in localization accuracy, compared to
the sliding window approach.

We also observed that regardless of the parameterization used, PSO is able
to localize the object reasonably well in early generations and then performs
only minor improvements. Thus, if localization accuracy can be traded with
performance, the proposed approach can result in further performance gains.

Another interesting conclusion that can be derived by studying Fig. 2 is that
there is no major difference in the use of more generations over more particles.
Despite this general conclusion, in individual images and, especially in those
that objects appear at smaller scales, it is preferable to use more particles than
generations, so that the parameter space is more densely sampled.
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Fig. 3. Representative detection results, for objects of arbitrary rotation and scale in
different cluttered backgrounds. The proposed approach exhibits robustness to orien-
tation and scale variations as well as to occlusions and illumination artifacts.

Figure 2 presents representative object localization results obtained by the
proposed method. In the first four rows, successful detections are shown (in
columns 2 to 6) of the reference objects shown in the first column. It can be ver-
ified that the proposed approach manages to localize objects despite significant
scale and orientation variations as well as partial occlusions, and specular re-
flections. Interestingly, objects are also accurately localized in the images of the
fourth column; these are photos of computer monitors displaying the reference
objects. The last row of Fig. 3 shows some of the worst localization results ob-
tained, which we consider as failure cases. In these examples object localization
accuracy is small mostly because of the strong specular effects.

5 Discussion

In this paper we formulated object detection as an optimization problem that
has been solved with PSO, an evolutionary optimization method. We apply this
method to a variant of the HOG descriptor. Experimental results demonstrated
that accurate object detection and localization can be achieved at a fraction of
the computational cost of the sliding window approach. It is important that PSO
has an inherently parallel nature, a fact that can be directly exploited to further
reduce the computational time required by employing GPUs. It is also important
that the proposed method can very easily be transformed into a tracking frame-
work, which employs object detection at the vicinity of the solution estimated
in the previous frame of an image sequence. Current research is considering the
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employment of PSO in formulations of object detection problem that exhibit
even higher dimensionality.
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