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Abstract

We propose a method for human head pose estimation
based on images acquired by a depth camera. During an
initialization phase, a reference depth image of a human
subject is obtained. At run time, the method searches the 6-
dimensional pose space to find a pose from which the head
appears identical to the reference view. This search is for-
mulated as an optimization problem whose objective func-
tion quantifies the discrepancy of the depth measurements
between the hypothesized views to the reference view. The
method is demonstrated in several data sets including ones
with known ground truth and comparatively evaluated with
respect to state of the art methods. The obtained experi-
mental results show that the proposed method outperforms
existing methods in accuracy and tolerance to occlusions.
Additionally, compared to the state of the art, it handles
head pose estimation in a wider range of head poses.

1. Introduction
Head pose estimation is a special problem of human pos-

ture recognition. The ability to solve it accurately and ro-

bustly is of particular interest, because the head pose of a

person conveys important information on its behavior and

intentions. In this work, we investigate how head pose es-

timation can be performed based on 3D structure informa-

tion provided by depth cameras. Head pose estimation can

benefit from color information. The importance of color

information is acknowledged and its fusion with depth in-

formation is left for future work.

The proposed approach is outlined in Fig. 1. The top

right image shows a reference range image of a human sub-

ject in a frontal posture, obtained by a depth camera at ini-

tialization. During operation, a surface model M is recon-

structed from the image D of the same camera. Range im-

ages of the model are rendered from candidate viewpoints,

upon a hypothetical surface patch W (middle-right). These

images may be incomplete due to sensor noise and occlu-

sions. To estimate head pose, the proposed method searches

Figure 1. Method overview. The proposed method renders range

images of the head, M, as reconstructed by a depth camera, from

different views and evaluates their similarity to a frontal reference

range view T (top-right) acquired at pose P0. These images are

formed upon a hypothetical surface patch W , centered at �c with

normal �r. The image corresponding to the current pose of W is

the middle-right image. The pose optimizing the above similarity

yields the estimation result and is shown superimposed on M; its

corresponding range image is shown on the bottom-right.

for a view at which the rendered image matches the ref-

erence (bottom-right). This registration is cast as an op-

timization problem that is solved through Particle Swarm

Optimization (PSO) [9]. To increase the computational per-

formance of the method, the rendering of range images is

performed on the GPU.

The remainder of this paper is organized as follows. In

Sec. 2 related work is reviewed. In Sec. 3, the proposed

head pose estimation method is presented in detail. In

Sec. 4, experiments which evaluate the accuracy, perfor-

mance and usability of the approach are presented. Finally,

Sec. 5 summarizes the main conclusions of this work.

2. Related work
A review of appearance based head pose estimation

methods can be found in [5]. The improvement in perfor-

mance obtained by the addition of 3D information as ob-

tained by depth cameras or stereo has been multiply cited in



the literature. This section is focused on these methods.

Several methods that utilize 3D information to achieve

head pose estimation are based on recognition of rigid land-

mark formations on the face. In [28], matching of land-

marks in a stereo pair enables their triangulation. In [29], a

user’s face is robustly tracked based on stereo-reconstructed

facial feature matching. The employed features are man-

ually identified at initialization and semantically annotated

through a model. In [20], multiple features are tracked from

multiple cameras. In [12], pose is estimated through nasal

ridge and facial symmetry detection, assuming unoccluded

facial views. The method in [4] uses a color and a depth

camera to robustly track the 6D head pose rather that ob-

tain its absolute estimate, based on deformable matching of

facial features in the color image. The corresponding 3D

locations of these matches in the depth image are utilized in

tracking, but as intensity information is originally employed

the method is prone to illumination artifacts. Such methods

exhibit reduced accuracy if features are occluded, which is

often the case at oblique views.

Several methods are based on nosetip detection, as this is

a size-dominant feature visible from a wide range of view-

points. In [24], a coarse estimate is provided by fitting a

plane to the 3D points around the nosetip and an ellipse

to the facial contour. The offline method presented in [19]

employs a spherical representation around the nosetip to

estimate head pose. In [3], a set of precomputed refer-

ence range views of a synthetic 3D face model, centered

at detected candidate nosetips, are compared with the facial

depth map and the best match yields head pose. Precision

is proportional to the number of reference views. The pro-

posed work includes a similar operation, but does not rely

on the accuracy of nosetip detection and does not discretize

the space of head poses.

Another class of methods use a global representation of

the head and do not rely on the result of a few landmark de-

tections. In [10], a coarse estimate is obtained based on

the partial derivatives of the depth map at the region of

the (detected) head. In [2], color and depth information

are fused in an iterative method to obtain head pose rela-

tive to to the previous frame. However, the method is lim-

ited to mainly frontal poses where a face can be detected in

the color image. In [21], a neural network classifies color

image pairs and the corresponding, stereo-acquired depth-

maps into pose estimations. In [13], consecutive passive-

stereo scans of the face are registered using ICP to a 3D

face model obtained through active-stereo, but the method

lacks accuracy during facial expressions and oblique angles,

where the face is partially reconstructed. The method in

[30] uses a face detector upon the textured visual hull of a

person. Illumination changes in the scene are expected to

influence the visual hull estimation and, thus, the acccuracy

of head pose estimation.

The methods in [7, 8] are the most efficient and accurate

representatives of this class of methods. They estimate head

pose through random forests based classification. As such,

they require extended training. Because of their accuracy,

these methods are used as the reference in a comparative

evaluation with the method proposed in this paper. This

evaluation demonstrates that the proposed method exhibits

increased accuracy and robustness.

The proposed method utilizes all available head related

information of a depth image instead of relying on a few

landmarks. As opposed to other global methods, it does not

require training or semantic information, but only a simple

initialization process that is typically restricted to the first

frame of a sequence. Unlike [3], which also compares ref-

erence range views with the sensed image, it does not resort

to exhaustive search nor does it rely on landmarks to deter-

mine such views. Instead, it uses a continuous search within

the pose domain which is also optimized to conserve com-

putational time. Furthermore, to the best of our knowledge,

this is the first work to explore the application of evolution-

ary optimization techniques to the problem of human head

pose estimation. Most importantly, the proposed approach

proves to be more accurate and tolerant to sensor noise and

occlusions while, at the same time, operates at a wider range

of head poses compared to state of the art methods.

3. Head pose estimation

The proposed algorithm renders auxiliary range images

of the reconstructed head from candidate poses and attempts

to find the most similar to a single reference view that is ob-

tained at initialization. An objective function is optimized

(minimized) to find the 6 pose parameters that render the

most similar view. This function is the cumulative depth

discrepancy between corresponding pixels in the candidate

and the reference views.

Typically, the reference view is selected to be frontal due

to the richness of the facial structure. Nevertheless, there

is no inherent limitation in selecting any other view as the

reference one.

3.1. Rendering head pose hypotheses

Given a candidate head pose P = {R, �c}, head range

image ι is formed as follows (see Fig. 1). Let W be a hypo-

thetical rectangular patch upon the XY -plane, centered at

the origin. Let also its intrinsic axes �ex, �ey be aligned with

xx′ and yy′. Transformation R�x+ �c, where �x a point upon

W , brings W in a relative pose to the reconstruction of the

head. The orthogonal projection of the surface M upon W
forms ι, where each pixel reads the distance of W from the

surface point that is projected upon it. The resolution of ι is

determined by the parameterization of hypothetical points

upon W; each such point �x corresponds to a pixel �p in ι.



Surface M is represented as a mesh of triangles which

are established through the neighborhood relationships of

pixels in D. Image ι is formed by projecting the triangles

of M upon W . During this projection, the ids of the trian-

gles that project upon each pixel are collected. The value of

ι at �p is the distance of �x to the point inside the triangle cor-

responding to �p. This point is found as the intersection of

the triangle with the line that passes through pixel �x and is

oriented as the normal of W , �r = R·[0 0 1]T . Since multiple

triangles may project upon �p, the closest one is selected so

that ι respects visibility constraints. The above rendering is

parallelized in the GPU using the framework in [11]. In all

experiments, the dimensions of W were 160mm×160mm
and a 1mm parameterization of �x yielded 160× 160 pixel

views.

At initialization, the user is prompted to face frontally

and leveled with the ground plane, towards a predefined di-

rection in space. By convention, this is the reference pose

P0 = {R0,�c0}, where �c0 = [0 0 0]T and R0 is the 3 × 3
identity matrix. The head is detected in D and its center is

considered as �c0. This center is not any special landmark

point, but used only as a reference for pose transformations.

Head detection is achieved through face detection [26] ap-

plied to the RGB image of our RGBD sensor. In the absence

of intensity/color information, depth-based approaches to

head detection can be adopted, such as those presented in

[18, 22], or [8].

Rendering the range view from P0 yields reference im-

age T . The method’s result is encoded as a rotation and

translation relative to P0.

3.2. Evaluating head pose hypotheses

The objective function o is defined for a candidate pose

Pk = {Rk,�ck} as the dissimilarity of the corresponding

range image ιk to T , where both images are rendered in the

same resolution (k enumerates candidate poses). As both T
and ιk may exhibit pixels with null depth measurements, a

mask image S of the same dimensions is used, in which a

pixel is set to 1 if the corresponding pixels in T and ιk are

both valid and to 0 otherwise. The dissimilarity is quantified

as the Sum of Squared Differences (SSD) of pairwise pixel

differences for pixels indicated as valid by S, normalized

for their number:

o(Pk) =
∑
i

∑
j S(i, j) · [ιk(i, j)− T (i, j)]

2

∑
i

∑
j S(i, j)

. (1)

Mask S filters out points where depth observations or

hypotheses are missing, i.e. due to lack of visibility, noise,

facial expressions, etc. In addition, at very oblique poses

or during severe occlusions a small portion of the subject’s

head is reconstructed and subsequently most of ιk’s pixels

are invalid. We choose not to trust the output of the objec-

tive function when more than the 1/3 of ιk is invalid.

To explore the behavior of function o regarding conti-

nuity and local minima, we have exhaustively computed it.

this investigation demonstrated that the objective function

is continuous in the vicinity of the global maximum, but ex-

hibits several local minima further away from it. As a result,

optimization methods that assume a smooth, continuous and

unimodal objective function are expected to fail.

Henceforth, the pose estimate at frame t is noted Pt, the

corresponding value of o as st = o(Pt), and its correspond-

ing range image as ιt.

3.3. Particle Swarm Optimization

The optimization (i.e., minimization) of the objective

function (Eq.(1)) has been performed based on Particle

Swarm Optimization (PSO) [9] which has been demon-

strated to be a very effective and efficient method for solv-

ing other vision optimization problems such as background

modeling parameters estimation [25] and hand articulation

tracking [14, 15, 16, 17]. PSO is an evolutionary algorithm

that achieves optimization based on the collective behavior

of a set of particles that evolve in runs called generations.

The rules that govern the behavior of particles emulate “so-

cial interaction”. A population of particles is essentially a

set of points in the parameter space of the objective function

to be optimized.

Canonical PSO, the simplest of PSO variants, has sev-

eral attractive properties. More specifically, it only depends

on very few parameters, does not assume knowledge of the

derivatives of the objective function and requires a relatively

low number of objective function evaluations [1].

Every particle holds its current position (current candi-

date solution, set of parameters) in a vector xt and its cur-

rent velocity in a vector vt. Moreover, each particle i stores

in vector pi the position at which it achieved, up to the cur-

rent generation t, the best value of the objective function.

Finally, the swarm as a whole, stores in vector pg the best

position encountered across all particles of the swarm. pg
is broadcasted to the entire swarm, so that every particle is

aware of the global optimum. The update equations in ev-

ery generation t to re-estimate each particle’s velocity and

position are

vt = K(vt−1 + c1r1(pi − xt−1) + c2r2(pg − xt−1)) (2)

and

xt = xt−1 + vt, (3)

where K is a constant constriction factor [6]. In Eqs. (2),

c1 is called the cognitive component, c2 is termed the so-
cial component and r1, r2 are random samples of a uniform

distribution in the range [0..1]. Finally, c1 + c2 > 4 must

hold [6]. In all performed experiments the values c1 = 2.8,

c2 = 1.3 and K = 2∣
∣
∣2−ψ−

√
ψ2−4ψ

∣
∣
∣

with ψ = c1 + c2 were

used.



Method Location (mm) Yaw (◦) Pitch (◦) Roll (◦) Accuracy (%)

[8] 14.50 (22.10) 9.10 (13.60) 8.50 (9.90) 8.00 (8.30) 79.0

Our run on [8] 5.21 (2.77) 2.38 (1.80) 2.97 (2.16) 2.75 (2.09) 78.7

This work DE 2.76 (1.79) 1.08 (1.04) 1.26 (1.11) 1.72 (1.69) 88.6

This work PSO 2.78 (1.24) 1.00 (1.05) 1.14 (1.09) 1.60 (1.69) 91.4

Table 1. Head pose accuracy comparison using the [8] dataset. Table shows mean error (and standard deviation) of head pose errors and

the percentage of successful detections, for a given angle accuracy threshold (see text).

In our problem formulation, the rotation component of

candidate poses is parameterized in terms of yaw (θ), pitch

(φ), and roll (ω) angles, correspondingly yielding R =
Rx(θ) · Ry(φ) · Rz(ω) for each parameter combination.

Translation is parameterized by the XYZ coordinates of the

face center �c. Particles are initialized at a normal distribu-

tion around the center of the search range with their veloc-

ities set to zero. Each dimension of the multidimensional

parameter space is bounded in some range. If, during the

position update, a velocity component forces the particle

to move to a point outside the bounded search space, this

component is zeroed and the particle does not perform any

move at the corresponding dimension. This is the only con-

straint employed on velocities. In case that the head pose

needs to be continuously tracked in a sequence instead of

being estimated in a single frame, temporal continuity can

be exploited. More specifically, the solution over frame t is

used to restrict the search space for the initial population at

frame t+ 1. In related head pose tracking experiments, the

search range (or the domain throughout which particle posi-

tions were initialized) extended ±15mm and ±10◦ around

the estimate of the previous frame.

3.4. Detecting and treating head pose estimation
failures

Pose estimation failures are detected by considering the

score of the objective function after optimization. More

specifically, if the score of the objective function at frame t
is below threshold τs then the head pose estimation is con-

sidered inaccurate. This may be due to an erroneous esti-

mation or even because the person is absent from the scene.

In such cases, the last valid pose is used to determine the

center of the search range for all subsequent frames until

a valid pose estimate is computed again. If the tracking is

lost for more than a number n of frames, then the bootstrap-

ping procedure is attempted until a head is detected. In all

experiments, n = 10 and τs = 0.15.

4. Experiments

The experimental evaluation of the proposed method

was based on a prototype implementation running on a

conventional PC equipped with NVidia GeForce GTX 580
1.56GHz GPU. All reported experiments considered 25

particles running in 40 generations. Under this configura-

tion, the implemented method runs at 10 fps. As each parti-

cle is independent, we parallelize its respective computation

in the GPU.

The methods in [24, 10, 2, 13, 19] do not provide a metric

evaluation of their accuracy and, thus, we cannot quantita-

tively compare with them. From those, the method reported

in [19] seems to be the most accurate and robust one, but

operates offline as tens of seconds are required to process a

frame.

The comparative evaluation of our method has been per-

formed with respect to the methods reported in [8, 7, 3]

as they are more recent and report state of the art accu-

racy. More specifically, we compare the proposed method

to [8] as that method is shown to be more accurate than [7]

and [3]. In the experiments we employed the implementa-

tion of [8] that is provided by the authors. Table 1, Table 2

and Fig. 3 report data from the aforementioned papers.

4.1. Ground truth experiments

In order to evaluate the proposed method experimen-

tally, we employed two publicly available datasets anno-

tated with ground truth. Both exhibit large variability in

terms of facial expressions and person appearances (persons

wearing glasses, hats, a variety of hairstyles etc.). The first

dataset [8] contains more than 15 ·103 images of 20 persons

and was obtained with the Kinect sensor. Head poses range

in ±75◦ yaw and ±60◦ pitch, but only cover mild roll rota-

tions of ±20◦. The second dataset [3] is acquired using the

depth sensor presented in [27]. It contains more than 103

range images of 20 persons. Head poses cover about ±90◦

yaw and ±45◦ pitch rotations. Roll rotations were not per-

formed in this dataset. The two datasets differ significantly

with respect to the noise in the depth measurements. More

specifically, the first dataset contains more significant noise

than the second one which was obtained by a higher quality

depth sensor.

In the experiments, the first frame of each sequence was

used to construct the reference head pose. As in the eval-

uation of both [8] and [3], we, also, consider a head pose

estimate to be a “miss” when the L2 norm of 3 pose angles

is greater than τa = 10◦ and the distance error is greater

than 10mm.

Table 1 compares the accuracy of the proposed method
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Figure 2. Comparison of estimation error as a function of actual head pose obliqueness, for this method (blue) and [8] (red).

with that of [8]. The 2nd column measures errors in head

localization, while columns from 3 to 5 measure errors on

the three rotational components of pose. In the table, the

6th column is the percentage of successful estimations for

these values of τa. In the 1st row, the results from the re-

spective work are copied. The method in [8] uses a 5-fold

cross-validation to avoid evaluation biases, as the training

data was produced from the same dataset that the evalua-

tion was run upon. In our experiments, we used the whole

dataset of [8], without knowing which were the training and

which were the test images. As we wish to compare the

two methods in more detail (see below), we executed this

method on the whole dataset albeit that, in this way, the

method is favored. Naturally, the results (shown in the 2nd

row) are more accurate than those reported in [8]. Even

so, the proposed approach performed better in all measures.

The results of this test are reported in the 4th row of Table 1

and are also plotted in Figs. 2 and 3.

The last two rows show the results obtained by two dif-

ferent evolutionary optimization methods. The last row re-

ports results obtained by PSO (Sec. 3.3). In the penulti-

mate row we use the same overall framework but use the

Differential Evolution (DE) algorithm [23] as the optimiza-

tion engine. DE run for the same number of particles and

generations as PSO. As it can be verified, PSO slightly out-

performs DE. Still, PSO is the preferred optimization tech-

nique because, unlike DE, it has a genuinely data parallel

computational structure that permits a very efficient GPU

implementation.

Table 2 compares the proposed method with the methods

in [7, 3] in the same way as above in the dataset made avail-

able by [3]. The findings of this comparison also show that

the proposed method provides better estimates of head pose

compared to [7, 3].

Another significant aspect of a head pose estimation al-

gorithm is the range of head poses that can be reliably es-

timated. In Fig. 2, the error of estimates is plot as a func-

tion of actual (ground truth) head obliqueness, in terms of

yaw, pitch, and roll. Both angular and distance errors are

provided. We observe that the proposed work retains rota-

tional errors at a low level (i.e. < 3◦) for a wider range

of poses, with the exception of head location during steep

roll rotations. However, these poses exhibited higher errors

in head rotation and contained yaw and pitch components,

for which the proposed method exhibits higher overall ac-

curacy. Furthermore, the results plotted in this graph for [8]

were obtained by using the training set as the test set, too.

In Fig. 3, the success ratio of the proposed work is plot1

as a function of the values of thresholds τh, τa that deter-

mine whether a pose estimate was a hit or a miss, according

to its disparity from the corresponding ground truth data.

Thus, the graphs plot the predicted success rate as a function

of the requested estimation accuracy. We observe that the

proposed method systematically outperforms [8]. The only

exception is for very large errors (> 22mm) in head local-

ization, where the estimation is, anyway, overly inaccurate.

Still, in this case, the rotational component of pose is more

accurate for our method. During system operation, we con-

1This ratio is called “accuracy” in the vertical axes, for comparison

with previous works. We refer to the same quantity as success ratio.



Method Location (mm) Yaw (◦) Pitch (◦) Accuracy (%)

[7] 13.40 (21.10) 5.70 (15.20) 5.10 (4.90) 90.4

[3] 9.00 (14.00) 6.10 (10.30) 4.20 (3.90) 80.8

This work PSO 7.05 (6.46) 1.62 (1.59) 2.05 (1.87) 90.1

Table 2. Head pose accuracy comparison using the [3] dataset. Table shows mean error (and standard deviation) of head pose errors and

the percentage successful detections, for a given angle accuracy threshold (see text).

sider such cases as a missed detection as they typically cor-

respond to an output of the objective function greater that

τs.

4.2. Qualitative evaluation

The qualitative evaluation of the behavior of the pro-

posed approach in sequences of depth images has been

based on the datasets described above, but also in further

challenging datasets that have been acquired at our labora-

tory. In Fig. 4 indicative results are shown, superimposed

on the color image of the sensor. It is noted that RGB data

are not used in pose estimation. Frames (i) to (v) and (x)

in this figure were acquired in our laboratory, while the rest

are taken from the dataset in [8].

For the data collected at our laboratory, we used the

depth camera of a Kinect sensor. Figure details contain

the reference view T (right) and the aligned range image

ιt (left), for the proposed method. Besides the superimposi-

tion of the results, the accuracy of the proposed method can

be judged by considering the level of alignment between T
and ιt.

The frames presented in Fig. 4 show the performance of

the proposed method in characteristic situations. In frame

(i), a subject makes a facial expression by opening his

mouth, producing a hole in ιt. In frames (ii) to (v) the

methods are tested in the presence of occlusions. We ob-

served the proposed method to retain its accuracy for faces

occluded up to 1/3 of the reference view. In frame (iv) we

test the methods for the case where, other than the nose,

head or hand parts appear intensely protruding in the depth

map. In such cases, methods (i.e. [24, 19, 3]) that assume

that the nosetip is the most protruding head region often fail.

In addition, in frames (v), (vi), and (viii) we test the meth-

ods for increasing facial variability induced by eyeglasses

and hats that were not worn by the subject during the ac-

quisition of the reference pose T . In frames (vi) to (viii),
we test the methods for very oblique poses that avail small

pixel support due to self-occlusions of the subject’s face. In

frame (ix), we compare estimates at a steep roll pose. We

have noticed that [8] tends to fail in cases of steep roll, per-

haps because is was trained on a dataset with only a few

such samples. The proposed approach is invariant to this

effect.

In frames (x) to (xii), we show cases of failure, where

our method provides an inaccurate pose estimate. In frame
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Figure 3. Success ratio as a function of required accuracy for this

work (blue) and [8] (red) in the [8] dataset.

(x), this is due to the combined effect of obliqueness and

increased distance, while, in frames (xi) and (xii), due to

the extremely oblique head pose of the subject. In (x) the

method in [8] does not yield a result, but in (xii) the latter

method is more accurate. Finally, both methods are inaccu-

rate for frame (xii).
The results of the proposed method on the employed

datasets are also presented in the video accompanying this

paper submission.

5. Summary
We proposed a method that estimates the head pose

based on depth data. The head pose estimation problem has

been formulated as an optimization problem that has been
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(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi) (xii)

Figure 4. Qualitative evaluation. Superimposed are the results of the proposed method (blue) and [8] (red) for characteristic situations (see

text).

solved based on Particle Swarm Optimization. The quan-

titative evaluation of the proposed method against standard

datasets annotated with ground truth demonstrates that the

proposed method outperforms state of the art methods in

terms of robustness and accuracy and that it operates suc-

cessfully in a wider range of poses than pertinent methods.

The experimental results also demonstrate that this claim is

valid for depth data provided by different depth sensors and



different noise characteristics. The proposed method has

also been shown to cope well with occlusions and in vari-

ability in facial size/distance, subject expressions, and view

obliqueness. We attribute the increased accuracy to the fact

that the full depth information is utilized in pose estimation.

This is in contrast to methods that achieve head pose esti-

mation through the registration of a few facial landmarks.

Currently, our method operates in 10 fps. Although

GPU processing is used, our implementation results in sev-

eral calls to the GPU. Thus, significant time proportion is

spent at GPU communication and thread initialization oper-

ations. A careful GPU exploitation is expected to improve

considerably the computational performance of the method,

making it a good candidate for head pose estimation in ap-

plications where real time operation is a critical issue.
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