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1 Executive Summary 
The purpose of this Deliverable – D6.2 Safe and autonomous robot navigation in AAL-homes 
(publication) – is to present the advancements regarding navigation, fine positioning and 
object detection as it will be used in PT2 in the form of a paper. To relate the work performed 
to the work outlined for WP6 in the DoW, we give a summary of the intended tasks and how 
they have been achieved and are presented in the paper.  
   
The tasks the PT2 HOBBIT robot needs to fulfil are map building, self-localisation and safe 
navigation as well as detecting objects within search, fetch and carry scenarios. The 
perception system shall be suitable for domestic environments, which are in general less 
structured and controlled than for instance industrial or hospital settings. To establish the link 
to the DoW, we repeat here the descriptions of the relevant Tasks in an abbreviated form to 
stress the key points related to this Deliverable. The focus of the Deliverable is on the 
individual components from Tasks 6.1 to 6.4. The upcoming deliverable D6.3 will them focus 
on the integration towards the Fetch & Carry scenario of Task 6.5: 
 

Task T6.1: Map building and self-localisation 
The purpose of this Task concerns the development of map building, update methods 
and self-localisation. Of particular interest to HOBBIT users is to implement a system that 
is reliable yet cost effective. To this end the present methods of laser mapping and 
localisation shall be replaced by novel RGB-D sensors such as the Kinect. Hence, we 
need to compare existing tools for allowing this extension and develop what is missing to 
improve performance towards the first prototypes. The idea is to start with the navigation 
methods available in ROS – Robot Operating System – and then add the functionalities 
required to approach reliable mapping and localisation. 
  
Task T6.2: Mobility in unstructured environments 
The focus of this Task is to make the step from an industrial, office, and museum-like 
environment, to the home environment. Today lasers only see one plane, while in 
cluttered home settings all height information up to the height of the robot needs to be 
regarded to enable safe navigation. Hence, we need to design the perception system 
such that it can cope with mapping, localisation as well as safe navigation in home 
settings. 
 
Task T6.3: Fine positioning 
Because of the physical design of the HOBBIT robot (by WP7) it is crucial to guarantee 
proper fine positioning for all operations concerning object manipulation. The resulting 
solutions will be also the basis for the developments in WP5 and WP7 (recharge 
procedure). To achieve this, we will improve and refine the mechanisms delivered by 
Task T6.2. This includes accurate localisation relative to objects (see Task T6.4) for pick 
up from the floor or grasping from various locations on tables or sofas.  
 
Task T6.4: Object detection 
The users want the platform to search for objects as well as to grasp and bring them. 
Hence, we need to design the perception system such that this functionality can be 
provided. We build on experience with object class detection using RGB-D sensors as 
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proposed for the tasks above. Further along the project we then need to learn and detect 
the newly learned objects in search and grasp tasks. 
 
Task T6.5: Integration of “Fetch & Carry” 
This Task signifies the fusion of the single mechanisms developed in Tasks T6.1 to T6.4 
to provide the functionality for the “Fetch & Carry” operations.  

 
To solve the technical issues described in Tasks 6.1 to 6.3, a combined map building, 
localisation, navigation and fine positioning method is needed. It is important that all these 
aspects play together in an adequate way. This will also be relevant for Task 6.4, where the 
platform needs to position the robot arm within a certain range of the object for the pick-up 
operation. Finally, this is also an important requirement to fulfil the integrated Fetch & Carry 
tasks in Task 6.5. Specifically, the technical function provided here will provide solutions for 
the user requirements, where the scenario numbers refer to the table of scenarios in D1.6: 

• Call HOBBIT (scenario I), 
• Patrolling as part of Emergency (scenarios II), 
• Guiding the user in the safety scenario (scenario III), 
• Moving to an object as part of the Pick-up and clear floor commands (scenarios IV 

and V), 
• Searching for an object as part of the Bring me command (scenario VII), 
• Following the user as part of the Transport command (scenario XI), and 
• Moving to the recharging station (scenario XII). 

 
For achieving a combined approach to map building, localisation, navigation and fine 
positioning we built on known ROS modules, analysed existing solutions, and developed an 
approach that overcome existing problems.  
We present these developments in a paper to document the scientific advance also to the 
robotics community. The paper is included in this deliverable as Appendix. 
In the following we highlight how the developments contribute to solving the issues raised for 
in the respect tasks of WP6. Section 2 summarises work towards mapping and localisation; 
Section 3 covers navigation, which is in PT2 highly improved such that Section 4 about Fine 
positioning is not separate but integrated into the general approach.  
Section 5 presents work on object detection and results of object search using the PT1 
platform. Section 6 presents first work towards the “Fetch & Carry” scenario as the main 
integration scenario of the above functions. It will be used in different aspects to provide the 
functionality for the scenarios outlined in D1.6. 
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2 Map Building and Self Localisation (Task 6.1) 
Regarding map building and localisation, the tasks for PT2 will be to build the map, to mark 
places that are of interest to the user, and to then provide means for autonomous navigation 
between any of these places.  

For map building and localisation we use the bottom RGB-D camera of the two-camera set-up 
as presented in D6.1.  

For PT2 operation in a new user's apartment, the procedure will work as follows. The robot will 
be shown around the environment so that an accurate and complete map can be built.  This 
task will be carried out in tele-operation mode by the facilitator. A metric map is built by using 
the ROS package of the Simultaneous Localization and Mapping algorithm GMapping1. When 
building the map, it is important that there are no dynamic obstacles moving around the 
apartment and that clutter is removed so that a stable representation of the environment is 
achieved. Visual feedback to the facilitator from the mapping process allows to obtain a 
satisfactory final map. New maps from larger environments including corridors - a key challenge 
in robotic mapping23 - were built for test purposes and the results were good for localisation. 
This was tested on the two prototypes of the Hobbit robot available at TUW. Fig. 1 shows 
examples of the mapping results. 

 

      
Figure 1: New maps built with the two Hobbit prototypes PT1 at TUW, including long corridors. 

 

Once the metric map is built and saved, it is possible to open it with a tool editor (based on the 
Qt cross-platform application framework4) developed so as to add room labels.  An example and 
more details are given in the paper in the Appendix. The result is the association of places to 
rooms, which is obtained automatically, and is now available for navigation.  

1 G. Grisetti, C. Stachniss, and W. Burgard: Improved Techniques for Grid Mapping with Rao-
Blackwellized Particle Filters, IEEE Transactions on Robotics, Volume 23, pages 34-46, 2007 
2 P. de la Puente. Probabilistic mapping with mobile robots in structured environments. PhD 
dissertation. Universidad Politécnica de Madrid. ETSI Industriales. December 2012. 
3 http://answers.ros.org/question/46996/ 
4 M. Dalheimer (January 2002). "Programming with Qt" (2nd ed.). O'Reilly Media. ISBN 978-0-
596-00064-6 
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As a next step, the facilitator will add to the map places from where the robot will look for the 
user. A default searching position is required for every room. This default position will be 
preferably located at the centre of the room and it must allow for 360° rotations of Hobbit. 
Other searching positions complying with this condition may be added as well.  

Finally, the facilitator will also specify places for searching objects. Search locations must 
ensure that the robot covers in a search procedure all surfaces where objects could be 
placed and that these surfaces are within the optimal search range where objects are neither 
too small nor too large to be recognised. For an example of a search see Section 6. 

With these results we achieve robust map building and localisation. Besides porting the 
methods to PT2, the next step is to show that the methods also work in user homes, which is 
planned to verify during pilot tests. 

 

3 Mobility in Unstructured Environments (Task T6.2) 
The PT2 platform will have to autonomously navigate in homes. Autonomous navigation 
performs the motion between any of the specified places as outlined in the previous Section. 
Depending on the scenario, the place information is provided either directly by the user (the 
robot asks first for a room and then a place in this room) or may be produced by the system, 
e.g., exploiting the pre-defined search places or automatically accessing all the defined places 
in a room. 

Regarding the low level navigation, we have to cope with a non-holonomic platform. The 
consequence is that each method needs to be accurately adjusted to the specific kinematic 
drive properties of the very platform. This can be achieved by tuning the respective 
navigation parameters and it requires thoroughly testing the resulting platform motions. 
Typical problems that are encountered with standard methods are related to the fact that a 
non-holonomic platform has a limited driving and curve range and difficulties for finding good 
parameter compromising performance in the existing solutions, especially for navigation in 
narrow spaces. We are not the first ones to notice these problems56 yet standard solutions 
do not yet exist.  

The paper in the Appendix summarises what has been done to find an optimal set of 
parameters for navigation in homes.  

Along the work, a serious bug of the default global planner provided by ROS was discovered. 
The consequence is that sometimes there are global plans passing through walls, obstacles 
and unknown space in the map. We found out that other people also had problems with this 
issue and that Hydro, the most recent version of ROS, should resolve this problem. Before 
migrating the whole system to Hydro - which is planned for the end of the year (WP 7) - 
several adjustments were made to reduce this problem. For the solution a compromise is 
needed so that it is possible to allow for a limited localization error while making sure that no 
static obstacles are ever ignored in the path planning. The short range blind area of the 
Kinect sensor makes the problem more noticeable. Avoiding planning through unknown 

5 http://answers.ros.org/questions/ 
6 http://code.ros.org/lurker/message/20100904.071241.569a5c7f.en.html 
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areas was simpler by means of a given parameter and it should prevent the problems to 
occur and this will be tested next. Figures 2 shows two cases in which the global path 
provided by the navfn algorithm available in ROS suffers from this kind of problem. 

 

   
Figure 2: Global paths through walls and unknown space observed in our tests in two 

different environments. 

 

Navigation can now be used and tested in further scenarios. It is possible to retrieve the 
paths and traveling distances to all the places from the path planner, without the robot 
needing to actually go there. This service was successfully used to implement an efficient 
search procedure for the locate user functionality presented in the scenario description in 
D1.6. The robot is now able to autonomously look for the user from all the search positions 
defined for each room, employing the distance criterion and previous knowledge about the 
last room where the user was detected if available. This functionality was implemented by 
means of the ROS SMACH architecture for creating complex robot behaviour7 (WP 3). Error 
cases like the path planning failing to obtain a path and even better navigation in narrow 
spaces will be future work before full integration into the PT2 platform.  
The results regarding navigation indicate that the challenges in user homes should be 
overcome. Next we will port methods to PT2 and then show that the methods also work in user 
homes, which is planned to verify during pilot tests. 
 

4 Fine Positioning (Task T6.3) 
For PT1 we had to specifically consider small platform motions, since the basic navigation 
framework did not work accurately enough. Also previous experience pointed this way, such 
that in the DoW, this task was added.  
However, with the navigation method in place as described in the previous Section, the robot 
reaches all places within its map with sufficient accurate such that no specific fine positioning 
measures are necessary any longer. The work planned for this task was effectively used to 
obtain a more generic and complete accurate navigation method rather than an additional 
fine positioning method.  

7 http://wiki.ros.org/smach 
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5 Object Detection (Task T6.4) 
Object detection is one of the core abilities for a robot in an object search and deliver 
scenario. Challenges of finding everyday life objects are the enormous number of different 
types and conditions in home environment. In deliverable D1.6 we summarized object and 
environmental parameter which make robust and reliable object search feasible. In the 
following paragraphs we explain newly developed and adapted approaches for object 
learning, recognition and grasping proposed for the PT2.  

In the spirit of the MUC concept, learning of objects is interactive. The PT2 robot navigates to 
a location close to the user, the robot grasps the turntable located at its body (see Figure 3) 
and presents the turntable to the user in a position such that it can be reached conveniently. 
Then HOBBIT asks the user to place an object on the turntable and starts learning the 
object. We designed a squared turntable which enables robust and accurate camera pose 
tracking (see Figure 6.6, left). Hence, any kind of object regardless of its texture or shape 
can be learned.  

 

 

 
Figure 3: Squared turn table for object learning (left) and the robot grasping the turntable 

located at the top right of its body (right). 

 

Given the positions on the turntable, object learning operates as follows. First RGB-D images 
are captured and the camera pose is tracked with respect to the region of interest (ROI) 
covering the object and the squared turn table. Two algorithms, namely an image keypoint 
based pose tracking pipeline and an Iterative Closest Point (ICP) approach are implemented 
to estimate the camera motion. Both algorithms are state of the art and allow robust camera 
pose tracking. The decision which one will finally be used is postponed and depends on the 
robustness and real time performance.  Additionally, we implemented the non-linear pose 
optimization proposed by Fantoni et al.8 which compensates the drift. A final filtering step 

8 Fantoni, S. and Castellani, U. and Fusiello, A., “Accurate and Automatic Alignment of Range 
Surfaces,” 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 
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using a weighted voxel grid inspired by KinectFusion9 is used to sub-sample and smooth the 
reconstructed object point cloud. Results of the first tests are shown in Figure 4. 

 

 

Figure 4: Reconstructed objects used for learning object detection models. 

 

For object detection we integrated an effective algorithm developed in our previous work10. 
The proposed method is based on a combination of different recognition pipelines, each 
exploiting the data in a diverse manner and generating object hypotheses that are ultimately 
fused together in a Hypothesis Verification stage11 that globally enforces geometric 
consistency between model hypotheses and the scene. Such a scheme boosts the overall 
recognition performance as it enhances the strength of the different recognition pipelines 
(Figure 5) while diminishing the impact of their specific weaknesses. Specifically, the 
currently implemented pipelines take advantage of the multi-modality of the data: 

• A semi-global 3D descriptor representing an extension of the OUR-CVFH approach12 
based on the colour, shape and object size cues. Regarding the segmentation stage 
required by the semi-global pipeline, we use the strategy recently proposed in our 
previous work13. 

9 Izadi, Shahram and Kim, David and Hilliges, Otmar and Molyneaux, David and Newcombe, Richard 
and Kohli, Pushmeet and Shotton, Jamie and Hodges, Steve and Freeman, Dustin and Davison, 
Andrew and Fitzgibbon, Andrew, “KinectFusion: Real-time 3D Reconstruction and Interaction Using a 
Moving Depth Camera,” in 24th Annual ACM Symposium on User Interface Software and Technology, 
Santa Barbara, California, USA, 2011. 
10 A. Aldoma Buchaca, F. Tombari, J. Prankl, A. Richtsfeld, L. di Stefano, M. Vincze, "Multimodal Cue 
Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose 
Estimation," in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, 
Germany; 2013. 
11 A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global hypothesis verification method for 3d 
object recognition,” in European Conference on Computer Vision (ECCV), 2012. 
12 A. Aldoma, F. Tombari, R. Rusu, and M. Vincze, “Our-cvfh: Oriented, unique and repeatable 
clustered viewpoint feature histogram for object recognition and 6dof pose estimation,” in Joint DAGM-
OAGM Pattern Recognition Symposium, 2012. 
13 A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, and M. Vincze, “Segmentation of Unknown Objects in 
Indoor Environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), 2012. 
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• A 2D local descriptor (SIFT14) which is able to generate object hypotheses with 
associated 6 DOF pose by back-projection of the 2D keypoint locations into the 3D 
space.  

• A 3D local descriptor (SHOT15) aimed at establishing correspondences between 
model and scene surface patches. 

 

 
Figure 5: Object detection pipeline including the different stages with complementary features. 

 

Figure 5 sketches the proposed algorithm by showing the various stages therein and the way 
the three different pipelines are merged together, ending up into a final Hypothesis 
Verification stage which is in common with all pipelines. As usual for recognition systems, our 
system consists of a training stage, where models of the objects to be recognized are 
learned based on the images the corresponding camera poses and the reconstructed objects 
(described in the previous paragraph). Finally, the identification and pose estimation of 
objects in the scene is done online and provides the 3D location for grasping the object. 

For the actual grasp action we decided to integrate an arm with six degrees of freedom, in 
contrast to the 5 degrees-of-freedom IGUS arm used in PT1. The additional degree of 
freedom makes path planning more flexible and a dynamic calculation more applicable. A 
model of the new arm was built for simulation with 3D CAD design software and the 
kinematic capabilities and path planning with obstacle avoidance were tested in the robotic 
simulation environment OpenRAVE. The new arm is tested separately and will be available 
on the robot in March. To improve the grasping method itself, we continued to use the PT1 
platform (Figure 6). 

The existing method for grasp point detection (Height Accumulated Features - HAF) was 
improved and  extended to cope with certain situations where objects were placed on top of 
bigger objects (like boxes) and near to the objects boarder of these bigger objects. These 
improvements were published at ICRA 2013. Furthermore, the results demonstrate the 
capability of the approach to grasp objects in cluttered environments (e.g. in a pile of 
objects). 

Further work was done to calculate an optimal gripper opening width as a pre-step for 
grasping. This enhancement enables grasping of an object even if the object is placed in 

14 D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of 
Computer Vision (IJCV), vol. 60, no. 2, pp. 91–110, 2004. 
15 F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of Histograms for local surface 
description,” in Proc. 11th European Conference on Computer Vision (ECCV 10), 2010. 
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between other objects. An example scenario with a video tape in a shelf is depicted in Figure 
6. 

 

  
Figure 6: View from camera in robot head and PT1 robot arm taking on object.  

 

During user trials for PT1 after each grasp was executed the robot checked if the grasp was 
successful. The procedure was time consuming, especially if a grasp was unsuccessful 
because the robot had to start grasping from the default position of the arm. Since one 
important point of criticism from user side was that Hobbit executes his tasks rather slow, we 
worked on optimising this procedure using a kind of visual servoing approach. We want to 
detect as soon as possible if a grasp was successful or not. A first approach detects edges of 
the gripper and compares the resulting edges with a reference of the gripper. The underlying 
concept is that the (edges of the) gripper gets deformed when the gripper is closed and an 
object is inside. Regrettably, the resolution of the Kinect camera is not sufficient to get 
significant views of a grasping position near the floor. So this approach could only be 
implemented with better hardware or perception method. A direct picture match with the SIFT 
algorithm (Scale Invariant Feature Transform) did not result in the correct outcome either, 
because there are too few interest points on the gripper. An additional implemented 
approach uses a CAD-model of the gripper and detects it with a pre-implemented algorithm 
called 3D-Net of the PCL (PointCloudLibrary, http://www.pointclouds.org). As the depth 
information of the gripper is not satisfying the needs of the algorithm – only a few depth 
points of the gripper can be detected – the gripper was covered with balloon-plastic to 
increase the visible gripper surface. Although this improved the results, it was still not 
satisfying our robustness requirements.  

Our favourable approach we are currently working on is based on a pattern matching 
algorithm with AR-markers. A pattern was designed and mounted on both sides of the 
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manipulator fingers. The gripper is closed if an object is detected in a promising grasp 
position relative to the gripper. If the gripper closes completely the pattern can be matched 
as the cut region get connected and complete the pattern. As the pattern gets matched it is 
obvious, that there is no object in the gripper. The grasping approach failed. If the pattern 
can’t be matched there has to be an object between the two parts of the gripper. Moving the 
robot arm up, trying to take the object away, and again starting the pattern matching verifies 
if the grasp was stable. The precondition for this solution is the top-view of the pattern, which 
is mounted at the gripper. The matching works with a rotated gripper in the range of 
approximately –45 … +30 degrees, measured from the top-view. The pattern cannot be 
matched if the gripper is rotated to the lateral view. Therefore we use a predefined arm 
positions with minimal arm movement necessary from the actual grasp position for checking 
the success of executed grasps. 

Next work is to port the robot arm planning methods to the new 6DOF arm and then start 
testing. The object detection method can be used as it is.  

6 Integration “Fetch & Carry” (Task 6.5) 

Work has been started towards integration for the search task. An efficient search procedure, 
based on the optimization of a cost function, has been worked out. As a prerequisite, several 
“search locations” per room have to be defined in the map during the initialization phase. To 
that end, a special annotation tool has been developed (Section 2). 

If an object has to be searched for, the cost function is evaluated for every search location. 
The locations are then sorted according to their corresponding cost, which yields the 
optimized search procedure for the object. The cost function takes several aspects into 
account, such that a good trade-off between the probability of the object being found at a 
search location and the time it takes to get there can be found. While the different locations 
are searched by HOBBIT one-by-one, the probabilities of the object being there are 
permanently updated depending on if the object has been found or not. 

Moreover, a penalty term is added to locations which are in the same room as the user, as 
we assume that the object is most likely located in a different room which should therefore be 
searched first. If a room cannot be reached because the path is blocked, the costs for all 
search locations in that room are increased such that these locations are considered last 
during the search procedure. 
As an additional approach to reduce the execution time for the fetch & carry procedure, we are 
working on an efficient real-time semantic segmentation algorithm. The purpose of the algorithm 
is to generate a segmentation of the scene, visible by the head Kinect, into semantically 
meaningful parts, like floor, wall, table, cabinet... Using the additional knowledge of the semantic 
segmentation result, the search procedure for objects can be further automated and optimized, 
without the need of specifically labelled “search locations”. Instead, the robot figures out itself, 
where possible object locations might be (objects are most likely located on tables, shelves...) 
and where it has to navigate to in order to be able to detect them. The knowledge could be 
exploited even further, to generate complete “semantic maps” of the environment, allowing the 
user to send the robot to automatically detected places like “the table in the living room”.  
Example of the current capabilities of the algorithm can be seen in Figures 8 and 9. 
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Figure 7: Example of a search procedure. The task is to search for the red mug. When 

entering the room, two other locations are closer and searched first. Other known objects are 
found and their location is stored for future search operations. 
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Figure 8: Example result of the semantic segmentation algorithm. Note that even the small area 
in front of the microwave is labelled as “table” and consequently recognized as a potential object 

location. 

 

   

 
Figure 9: Another example result of the semantic segmentation algorithm. Only local geometry 

features are used so far, further improvements are part of current work. 
 

At the moment, the method is only using local geometry features to classify the points 
returned by the top Kinect camera, colour information will be included in the next step. 
Finally, we will add a probability model for the spatial relations between class labels, what is 
expected to further enhance the labelling accuracy. Thus, from training data the algorithm will 
learn relations like objects are more likely to be located on tables or cabinets that are close to 
walls and so on. 

The next steps are to thoroughly test this method and analyse if it can be integrated into the 
search procedure. The search procedure itself needs to be ported to PT2 and then tested in 
lab and pilot tests. 
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7 Conclusion 
The aim of this Deliverable was to describe the progress with respect to the components of 
WP6 for future integration into the PT2 HOBBIT robot. The main technical advance regarding 
map building and navigation (Tasks 6.1 to 6.3) is presented as a publication. The intention is to 
submit this paper to IROS 2014. We also highlighted key points and related the achieved results 
with the description of work. In summary the objective of replacing the laser sensor(s) with 
RGB-D sensors has been achieved and we retain robust mapping, localisation, obstacle 
avoidance, and navigation capabilities.  
Furthermore, we also report work in Tasks 6.4 and 6.5. This work has the goal to obtain a 
practical system for object detection and object search for use in the PT2 HOBBIT robot. We 
show that we achieve object learning with a method that is easier to handle for the user than in 
PT1. We further outline a method to use the hierarchical place and room structure to search for 
learned objects and to store objects if found during the search.  

The next step is to transfer the developments from PT1 to the new PT2 platforms. This work 
started already by discussing interfaces between the ROS methods and the Metralabs platform. 
Furthermore, we will test the existing localisation and navigation methods at Metralabs for 
potential integration or combination. Results will be reported in D6.3. 
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8 Appendix 

[1] P. de la Puente, M. Bajones, P. Einramhof, D. Wolf, D. Fischinger, M. Vincze: RGB-D 
Sensor Setup for Multiple Tasks of Home Robots and Experimental Results; to be submitted to 
IROS 2014. 
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RGB-D Sensor Setup for Multiple Tasks of Home Robots and
Experimental Results

P. de la Puente, M. Bajones, P. Einramhof, D. Wolf, D. Fischinger, M. Vincze1

Abstract— While navigation based on 2D laser data is well
understood, the application of robots at home environments
requires seeing more than a slice of the world. RGB-D cameras
have been used to perceive the full scenes and solutions exist
consuming extensive computing power. We propose a setup
with two RGB-D cameras that covers the need for conflicting
requirements regarding localization, obstacle avoidance, object
search and recognition, and gesture recognition. We show that
this setup provides sufficient data to enable safe navigation at
homes and we present how ROS modules need to be configured
to use virtual RGB-D scans instead of laser data for operation
in real-time (10Hz). Finally, we present first results of exploiting
this versatile setup for a home service robot that picks up things
from the floor to prevent potential falls of its future users.

I. INTRODUCTION

Service robots are envisioned to support humans in a
variety of everyday activites, such as cleaning, fetching and
carrying objects, or monitoring and assisting older adults [1]–
[3]. Therefore robots have to enter domestic environments
and need to be equipped with a sensor set-up that allows
close and safe interaction with the user. Besides sensors
mounted on the robot itself, ambient assisted living envi-
ronments (AAL) can add information and allow for more
complex and locally distributed tasks.

Common to these different applications is that they require
the robot to navigate in a cluttered 3D environment, to
detect users and their gestures, and to recognise objects.
While technical solutions exist for each of these core use
cases, there are only few robot systems that integrate all
functionalities and the solutions that exist are rather costly,
e.g., PR2 or Care-o-bot [3].

Up to now only service robots with very limited func-
tionality have entered private households, such as vacuum
cleaners and entertainment robots. One reason for this is
definitly the cost factor. With the intention to enter a home
market, which presents a high cost-saving potential, it is
important to study affordability. While cost factors can be
reduced at all fronts, we inspect more closely the sensor
system needed for a versatile home robot. The intention is
to propose an affordable sensor setup that provides data for
all use cases with a minimal configuration. The inherent
conflicts to resolve can be summarised as follows:

1) Most relevant navigation problems are considered prac-
tically solved using rather expensive 2D laser scanners
with 180 or more degrees of field of view (FOV)

1The authors are with the ACIN Institute of Automation and Control.
Technical University of Vienna. authors@acin.tuwien.ac.es.
This work was partially funded by the European Commission, project
HOBBIT (FP7-288146).

mounted low on the robot front [4], [5]. There exist
good datasets, e.g., [6] and open source solutions in
ROS. However, obstacle avoidance is limited to one
height and a shoe or table edge would go undetected,
both likely to be found at home. A second laser or
camera looking downwards is required to deal with
these cases.

2) Detecting the user and objects both require RGB or
RGB-D images and a camera position higher on the
robot. While it is good to look rather straight ahead
for users, objects on tables or on the floor are better
seen from above than from a degenerated side view.

In this paper we propose a sensor setup based on two
RGB-D cameras (Fig. 1): camera 1 is mounted on the robot
front similar to lasers and camera 2 is mounted on a robot
head that has at least two positions to look straight forward
or to look down. Camera 1 obtains data for the purpose of
seeing as far as possible for localization, while camera 2
either looks straight for user and gesture detection or looks
down to find obstacles. The search for objects can use both
viewing angles. Alternatively to the pivoting camera 2, two
cameras could be used. Since the head can also be used as
indication to the user what the robot attends to, we prefer
the proposed version.

Fig. 1. Final design of the Hobbit robot, with two RGB-D sensors. The top
RGB-D sensor in the head of the robot can be tilted for object detection,
obstacle avoidance, object grasping and object learning tasks.

One of the most important problems in current robotics
is the transition from theory to working systems, using and
improving over state of the art available open source tools.
The contribution of this paper is to show why the proposed
setup with two RGB-D cameras is sufficient to fulfill the core
home tasks. In particular we show how standard navigation
methods designed for laser data need to be adapted to cope
with the lower accuracy, shorter range, and, most critical, the



small FOV of RGB-D cameras. Furthermore, depending on
the specific robot construction and place to mount the sen-
sors, there may be a blind spot in front of the robot. We show
how to overcome these issues by dynamically adapting the
planning frequency and merging local information with the
global path. And we show how to cope with possibly reduced
localization accuracy and still obtain safe robot paths. If the
paper is accepted, we will make the code publicly available
in ROS. We then show how navigation is integrated into the
service robot tasks based on the ROS SMACH architecture
for creating complex robot behaviour [7]. And finally we
present the results of operation in different environments.

The paper proceeds as follows. The next section reviews
related work. Section II lists and discusses the partially
conflicting requirements on the sensor setup for home robots.
Section III presents in more detail proposed sensor setup
(Fig. 1). Section IV presents the solutions for navigating
based on this camera setup and Section V embeds navigation
in the robots behaviour. Finally, Section VI evaluates the
RGB-D setup in different home-like settings.

A. Related Work

Safe and reliable autonomous navigation in home environ-
ments remains an open topic in mobile robotics. The standard
solution for 2D mapping, localization and navigation uses
one laser scanner with 180 degrees field of view mounted
horizontally in front of the robot looking forward. This
2D approach has proved an effective solution for mapping
and localization in most indoor environments [x, y], but
it is limited with respect to obstacle avoidance when the
environment contains obstacles of different heights. In that
case, other solutions must be found [8], [9].

Another option is to rely on RGB-D cameras. The large
interest is supported by a recent proposal for a Kinect Nav-
igation Challenge in the robotics community. The initiative
was launched jointly by Microsoft and Adept Mobile Robots.
The RGB-D sensor characteristics add new challenges such
as lower sensor accuracy, small FOV, and handling large
image data. Also, a first dataset and benchmark to evaluate
RGB-D based SLAM has recently been published [10].

Several recent works have attempted to show whether
RGB-D sensors, in particular the Kinect Sensor by Microsoft,
could replace laser scanners [11], [12] and be used for
mobile robotics navigation [13]–[17]. Interesting technical
comparisons mainly focusing on the specifications and per-
formance of the sensors were presented in [11], [14]. The
standard settings of state of the art implementations were
used without any explanations or adaptations. No sugges-
tions to improve the results were proposed or tested, even
when the outcome was not deemed satisfactory. Complete
navigation tasks with state of the art implementations were
not addressed. Novel methods and algorithms especially
designed for RGBD sensors were also developed [16], [17].
An interesting approach applies a wall extraction method for
localization and an incremental path-finding algorithm that
avoids full re-planning for obstacle avoidance, specifically
mentioning some particular challenges of real world home

environments [16]. Convincing results were obtained with
this approach, although the validation was limited to a single
navigation task from one predefined point to another. Another
interesting solution is based on plane detection filtering
and matching with 2D lines for localization, while all the
projected points are used for obstacle avoidance by obtaining
open path lengths for different angular directions [17]. The
results of this localization method were more accurate and
robust than those of approaches simulating the readings of
a laser scanner. Long run trials of the complete navigation
system were succesfully performed. Other researchers have
analyzed the possibility of using a Kinect sensor for obstacle
avoidance [18], particularly pointing out and addressing
problems related to the existence of a blind detection area.
The reliability for detecting thin obstacles was also evaluated.

Regarding a solution for navigation based on RGB-D data,
we summarise that full 3D methods are computationally
expensive and not suitable to be combined with parallel
tasks for affordable home robots. Furthermore, standard path
planning algorithms are not designed or implemented to
work with 3D data. The rest of the paper presents practical
solutions for a working system based on RGB-D sensor data
using available open source implementations in ROS. We
believe there is merit in reporting the lessons learned and
extensions made in the development of the whole system.

II. REQUIREMENTS FOR HOME SERVICE
ROBOTS

The challenge of service robots for homes is that a large
spectrum of functions is desired [19]. Extensive studies
enumerate plenty of tasks [20] also including the use of
state-of-the-art AAL features [21], [22]. Key functions range
from natural interfaces including language and gestures,
visual perception to find and manipulate objects of all sorts,
safe navigation independent of clutter expected at home and
connection to existing AAL devices, to detecting emergency
situations. With these tasks in mind, we focus on the require-
ments which define the sensor configuration.

• Call robot. The robot has to be able to come to a
given place when called by the user. This task requires
localization and obstacle avoidance for safe navigation.

• Find user. The robot has to be able to look for the
user. This task requires localization, obstacle avoidance
for safe navigation and person detection capabilities.

• Bring object. The robot has to be able to bring objects
to the user. Besides localization and safe navigation, this
task implies being able to detect and pick up objects.

• Multimodal interaction. The robot should support
multimodal human robot interaction (HRI). This task
requires gesture recognition capabilities.

The basic tasks subsume further functions such as follow-
ing and guiding a person, patrolling and security checks, or
continuously checking the floor for potential obstacles that
could cause a fall. From these tasks to the user, we extract
technical requirements for the perception system of the robot:

• 2D localization and mapping Ideally the sensor(s)
observes large, planar, static structures that are at a



maximum distance from the robot, like walls or heavy
furniture. A full 3D reconstruction may be possible but
time consuming. The purpose is also served by using
available implementations for 2D data requiring only
horizontal depth data.

• Obstacle avoidance for safe navigation All height
ranges up to the height of the robot need to be observed
to detect obstacles such as table edges. For safety
reasons it must be assured that the traversable floor
area is detected and that there are no stairs leading
downwards.

• Object detection and pick up Users studies [20], [23]
indicate that objects on the floor are most important.
Convenience asks for objects at medium high, while
in special cases grasping objects from higher than the
typical head height might be required. Starting with the
critical cases, it is required to cover heights from the
floor up to 90cm (kitchen counters). This includes tables
of all heights as well as lower shelves. Object detection
requires RGB-D data. The sensor should look down at
tables, which allows for table plane detection to simplify
object segmentation. Furthermore, side views of objects
may be degenerated and render recognition difficult.

• Person detection and gesture recognition RGB-D
cameras are becoming the standard for these functions,
e.g., [24], [25] and there are source implementations
available in ROS. The mounting height can range from
0.6m to 1.8m, and the optical axis should be approx-
imately parallel to the ground plane so as to detect
standing/sitting persons as well as their gestures.

These requirements obviously bring about conflicts in the
decision making for the sensor setup, including aspects such
as where to place the sensors in general, at which height and
with which orientation. One solution could be to have one
static RGB-D sensor for each required capability, which is
hardly feasible because of space, connectivity and computing
reasons. Although RGB-D sensors are cheap, it is highly
preferrable to have a minimum setup configuration.

III. PROPOSED SENSOR SETUP
In view of the requirements presented above, the selected

solution was to mount two RGB-D sensors on the robot
(Fig. 1).

1) Bottom Camera, fixed: a ground-parallel RGB-D bot-
tom camera at a height of about 35 cm is used for
mapping and localization. This height was selected
because it makes it easier to detect walls and static
furniture despite the presence of chairs and tables.
At the same time, it allows for the detection of low
static elements such as low shelves or sofas, which
can improve the localization behavior in wide rooms.
The ASUS Xtion Pro Live RGB-D sensor was selected
because of its slightly larger FOV (58◦H x 45◦V vs
57◦H x 43◦V of the Kinect).

2) Pan/tilt Top Camera: an RGB-D camera is mounted on
a pan-tilt unit at a height of about 120 cm. This camera
is used for object detection, human-robot interaction

and obstacle avoidance. Although the pan-tilt unit
allows for continuous variations of the pan and tilt
angles, we only make use of a set of predefined pan-
tilt angle combinations. In an initial setup, two fixed
angles up and down proved to be sufficient. However,
users perceive the head as more natural, if the camera
directly looks at them. When looking forward, with
the optical axis parallel to the ground, the depth data
are used for human detection and tracking and for
detecting and grasping objects on table tops. When
looking forward and down (tilt angle about 60◦), the
depth data are used for close-range obstacle detection
during navigation. Additionally, when looking down
and left, forward or right, the depth data are used for
detecting objects on the floor. Since the robot has an
arm on its right side, looking down and right is used for
object grasping from the floor and when learning new
objects. The Kinect was chosen in this case because
its VGA colour images have better quality: the Kinect
uses a Bayer pattern to encode the colour information
while the ASUS uses YUV422.

IV. ADAPTING ROS NAVIGATION TO RGB-D
CAMERAS

The intention of providing a generic camera setup is
combined with the goal to provide a generic setup for
navigation. We build on existing solutions in ROS [26] and
the available navigation stack including:

• Mapping. The slam gmapping node is a ROS wrap-
per of the GMapping algorithm [27]. It creates occu-
pancy grid maps from laser and odometry data collected
by a mobile robot. A map server utility for saving and
accessing previously obtained maps is also provided.

• Localization. The amcl ROS node is an implementa-
tion of the adaptive (or KLD-sampling) Monte Carlo
localization [28] approach, which uses a particle filter
to track the pose of a robot against a known occupancy
grid map.

• Autonomous navigation. The move base ROS node
makes use of a global and a local planner to drive
the robot towards a given goal. The available global
planner is navfn, which operates on a costmap to find
a minimum cost plan from a start point to an end point
in a grid, applying Dijkstra’s algorithm [29]. The avail-
able local planner is a base local planner, which
provides implementations of the Trajectory Rollout [30]
and Dynamic Window [31] approaches to local robot
navigation on a plane.

The navigation experimental stack provides
other algorithms, but they are not in a mature enough state
to be used reliably, some specific functions are missing and
the documentation is scarce.

A. Data Preprocessing

The first problem to overcome towards using the 2D
navigation tools available in ROS comes to properly convert-
ing the provided depth data matrices to the expected input



format. The pointcloud to laserscan package can be
used for that purpose, but we implemented our own nodes
for the conversion in order to have more flexibility in the
selection of distance measurements and the segmentation of
obstacles.

The 640x480 individual 2.5D data computed from the
depth images of the ground-parallel bottom RGB-D camera
are initially reduced to 640 individual virtual laser beams.
To do so, the range is obtained by estimating the vertical
structure for each of the 640 columns using a slice of the
2.5D data above and below the plane spanned by the cameras
optical axis and the central row of the depth image. Provided
that the RGB-D camera had produced valid depth informa-
tion within such a slice, the maximum distance within each
column is taken as a measurement for the virtual 2D laser
scan. The reason for taking the maximum distance is that
walls, the most adequate features for localization, are the
boundaries of indoor environments. The angle information
for each column is taken from a lookup table generated
at system start-up from the known geometry of the RGB-
D camera. In our tests we used a slice of 5cm around the
virtual 2D scan plane. To be compatible with ROS, the 640
measurements are re-sampled into a scan with equal angle
increments (0.5 intervals were used).

To detect obstacles in front of the HOBBIT platform
we use the data from the tilted top camera and apply a
segmentation algorithm for the conversion into a virtual
scan. We apply an approach which is based on v-disparities
[32] that we initially developed for segmentation with stereo
cameras, but it works without change on RGB-D camera
disparity images too. Fig. 2 shows an example of the results.
Details can be found in [33]. It is possible to ignore a
rectangular area of the images so as not to create obstacles
that correspond to the lower part of the robot base.

Fig. 2. Top: RGB scenes. Bottom: preprocessing for obstacle avoidance.
For each scene, from left to right and top to bottom: confidence map, relative
gradient values of the lower resolution disparity image with respect to the
vertical gradient of the line corresponding to the floor, points outside a
disparity value band around the floor disparity are labeled as obstacle points,
projection onto the floor plane, projection labeled, virtual 2D laser scan
obtained by raytracing the labeled grid.

B. Reasoning about the Parameter Configuration

The default parameter values used in the ROS navigation
stack are specifically provided for laser based systems. As
previously mentioned, RGB-D data present very different
characteristics, so a proper selection of parameters is re-
quired.

The proposed sensor configuration allows the blind area in
front of the robot to be reduced, but not completely avoided
(see Fig. 1). This issue, together with the reduced FOV
for obstacle avoidance, the shorter maximum range and the
fact that the designed mobile platform is a non-holonomic
platform, are the most important points to consider in order
to find good parameter values to make the system work
well with the provided input data. This task is definitely not
easy -not even with standard laser based systems- and many
researchers and ROS users have pointed it out before.

To begin with, by making the robot consider its orienta-
tion when following the global plan (heading scoring
parameter set to true), it rotates in the first place and
does not get so much separated from the global path when
starting to follow it. Depending on the followed trajectory,
this may or may not be helpful for avoiding collisions with
small undetected obstacles, considering the blind zone of
the sensors. Fig. 3 shows two examples of this situation.
In general, considering longer trajectories, it is very unlikely
that an obstacle lying closer to the direct route from one point
to another is not detected. Given the way the local planner
works, and the reduced accuracy of localization, we found
this mode of operation safer, especially in narrow spaces.

Fig. 3. In place rotations before moving towards a goal can reduce the risk
of collision in some cases, but not in others. The black circles represent the
blind zone and the blue lines represent the limits of previously observed
areas. The robot goes from A to B and then from B to C. The small red
areas are not detected by the sensors with the given trajectory, but they
could be covered by longer trajectories.

The weights were adjusted so that the global path is
followed accurately enough while still trying to reduce the
distance to the goal. Furthermore, the planning frequency
was increased because the plan needs to be modified when
a new obstacle is encountered, and there is less time, since
the maximum range of RGB-D sensors is not very large. A
compromise has to be found so as to avoid oscillations with
paths going through alternative sides of an obstacle.

The effects of modifying the simulation time for the
local planner were also analysed. The main problem with
the approach of the local planner is that it does not allow
for combinations of motion primitives towards longer term
planning. If the simulation time is too short, the robot may
choose a command action that is the best for that instant but
may require higher manoeuvrability later. If the simulation
time is too large, single translational and rotational velocity
values for all the simulation period are not the best option,
especially if some obstacles are not detected. Finding a



satisfactory value for this simulation time helped solve some
problems with oscillations in the motion without getting
undesired effects within different motion primitives.

C. Solving the problems related to the blind area.

Even with a suitable configuration of parameters and
settings, the ROS implementation does not allow the static
and obstacle maps to be properly used for global and local
path planning if there is a blind detection area. Real obstacles
in the static map can be erased and a selective memory is
required to deal with obstacles not represented in the static
map which get too close.

In the first place, the ray tracing method applied to clear
up the static map and hence achieve better performance when
the robot is slightly mislocalized cannot be used in a straight
forward way. Due to the blind area in front of the robot,
real obstacles would be erased. This is not a problem if the
obstacles are thick external walls and the global planner is
configured not to allow navigation thorough unknown areas,
but it is an issue when dealing with partition walls and other
kind of obstacles inside the environment. On the other hand,
if the static map is not cleared at all, localization errors can
result in the planner producing undesired paths, as shown
in Fig. 4 left, where the path goes closer to the left wall
than expected. The proposed alternative comes to adding a
new cost map layer plug-in, in the Hydro version of ROS.
The cells in the static map which are inside the blind area
or beyond the limits defined by the maximum range of
the Kinect should be copied to the new layer. Ray tracing
must be applied to the intermediate area only. This way, the
resulting paths are closer to the desired solution and only
deviate in the blind area, as shown in Fig. 4 right.

Fig. 4. Planning under slightly wrong localization circumstances. Left:
using both the static map and the detected obstacles. Right: applying
the proposed approach the static map outside the blind zone is deleted
by ray tracing and not considered by the planner, only the dashed lines
corresponding to the real world are taken into account. Note that there is
more free space for planning.

Besides keeping the static map within the blind zone for
safety reasons to avoid collisions when rotating, for instance,
it is also important to remember previously observed obsta-
cles close to the robot. With the standard system, when the
robot approaches an obstacle it suddenly disappears and the
path planner updates can make the robot crash. If all the ob-
stacles are remembered, dynamic elements no longer present

make global planning harder or even not possible, without
reason. The proposed idea is again to modify the new layer so
that at every iteration the obstacles outside a given window
are erased by means of the resetMapOutsideWindow
function, while the window is copied from the obstacles layer
to the new layer and the observation persistence
parameter is increased so that the obstacles inside this
window are remembered for a while. This idea is somewhat
similar to the short term memory concept developed in [18].
In our setup, the RGB-D sensor is used for localization,
which hence is less reliable and may cause some obstacles to
get slightly enlarged sometimes. A good choice of parameters
is again very important.

D. Rooms and places

The 2D navigation system was extended to use the concept
of rooms, and places inside the rooms. This extension is
not related to the sensor modality and can be used by
any system. It facilitates the tasks to be carried out in the
home environment. Other researchers also pointed out the
importance of using intuitive map and place representations
[34], [35].

Once a metric map is built and saved, it is possible to
open it with a tool editor developed so as to add room
labels (see Fig. 5 for an example). The tool is based on
the Qt cross-platform application framework and it processes
maps in the ROS format (pairs of .pgm and .yaml files),
but it is independent of ROS and does not require ROS.
The corners of a room are indicated by mouse-clicking on
the desired points, then the room must be saved and an
adequate name given by the user must be entered into a
dialogue box. If the user is not satisfied with the room shape
or the given name, it is possible to delete the room and add
it again, at any point of the room labelling process. The
geometry of the rooms does not have to be very precise,
what is important is that it contains all the places of interest
that the user wants to specify in a subsequent stage of the
initialization phase. One advantage of this manual process is
that spatial ambiguity is not a problem, since it is the user
who decides how to partition the environment. When the
result is acceptable, it can be saved to an xml-file to be used
later. Using this approach, the room annotation functionality
can be incorporated into the mapping process in a very easy
and convenient manner.

Fig. 5. Room labelling example.



After the approximate geometry and the names of the
rooms in the environment have been saved, places of interest
can be added to each room. To this end, the robot is tele-
operated to the selected places, while amcl localization is
performed within the map created by GMapping. The robot
is stopped at the places of interest and a place label is
given (published). The system automatically recognizes the
current room and then the place name, along with its x-y
position coordinates, is stored in the list of available places
for that room. The result is a hierarchy of rooms and places
inside each room. The recognition of the current room is
based on the crossing number algorithm to detect whether
a point lies inside a generic polygon. Our implementation
was inspired by the original article by M. Shimrat [36] and
by the pseudo code provided by D. Eppstein [37], where we
resolved inconsistencies and improved the method to make
it more generic. Consequently, the association of places to
rooms operates automatically. This functionality is available
by means of two ROS nodes, one for getting the current
room name and another one for adding the places to the
corresponding room in the xml file.

Navigation to the desired places is now possible. A parser
node uses the xml file previously created and converts places
names to poses to be used by the move base node for
autonomous navigation. Using all these new functionalities
is extremely easy.

V. IMPLEMENTATION OF HOME ROBOTIC TASKS
IN AMBIENT ASSISTED ENVIRONMENTS

The functionalities presented in Section II work as follows.
Navigation to places on demand. The user can select a

room and the name of a place, and the robot navigates to
that place. Wireless call buttons in fixed positions of the
AAL environment will be used to define the target place. The
user can call the robot to a place. Pressing a call button just
sends a message with the place name corresponding to the id
number of that button. This activates autonomous navigation
to that place.

Locate user. The robot can autonomously look for the
user from all the search positions defined for each room,
employing a distance criterion and previous knowledge about
the last room where the user was detected if available.
This information can be obtained from presence and activity
sensors placed in different rooms of the AAL environment.
The functionality was implemented by means of the ROS
SMACH architecture [7]. The state machine for this task
is shown in Fig. 6. Please note that the head camera is
looking forward when in the ROTATION state (user search)
and downwards otherwise. The user detection approach is
described in [25].

Bring object. The user can ask the robot to bring a
previously learned object. The predefined list of search
positions is updated with likelihood values based on previous
findings. The top Kinect is used for object recognition and
grasping. The description of the algorithms used for this
purpose is beyond the scope of this paper, but their main

Fig. 6. State machine for the Locate User functionality

ideas and evaluations were already published [23], [38]. The
implementation of this functionality is based on SMACH too.

Multimodal HRI. The gesture recognition techniques used
by the robot are based on the methods presented in [25].
Other ways to communicate with the robot are based on
speech recognition and touch screen commands.

VI. RESULTS

As a result of the proposed sensor setup the following
a priori specifications and requirements were derived. The
open space of a room should be smaller than five meters. The
user should not modify the main furniture layout. However,
other objects such as chairs and smaller obstacles can be
moved. There will not be any long corridors. The obstacles
that can be detected by the robot are those objects larger
than 500 mm2 and higher than at least 20 mm with a mate
or opaque surface. Obstacles of this kind can be detected



as long as they are located at a height between the floor
level and the height of the top camera. Some examples are
protruding table corners, chairs, stools, cardboard boxes lying
on the floor, etc. If at a given point, after several attempts,
a new obstacle is blocking the robot path, the robot will ask
the user to remove it.

We measured that the average error of the virtual laser
scan with respect to a Hokuyo URG-04LX laser sensor is
below 1.25cm within a range of 4m. We concluded that the
localization is satisfactory if at least 30% of the mapped
environment can be observed. Localization with the laser
scanner needs only 5% in direct comparison. The algorithm
was set to update the 500 particles after the robot has moved
at least 0.25m or turned at least 0.2 radians.

The results from our tests to find better parameter values
are presented in Table I. Table II contains a more detailed
analysis of how changing the parameters sim time and
path dis bias affect navigation through a narrow door-
way with quite a straight forward trajectory (see Fig. 7 left).
The Time per run is computed as the average value for the
tests in which no extra rotations were performed. A good
initial localization estimate was given at the beginning of
every run. Of course, it is hard to isolate the effects of one
parameter alone, but by providing similar starting and ending
conditions and keeping the other parameters the same, we
tried to limit the influence of other factors.

TABLE I
PARAMETER VALUES

Parameter Value
heading scoring true

path distance bias 0.6
goal distance bias 0.8
planner frequency 5

sim time 2
observation persistence 5

TABLE II
ANALYSIS OF PARAMETERS

Parameter sim time path dis bias
Value 1 1.5 2 2.5 0.6 0.8

Success rate 9/10 9/10 10/10 10/10 10/10 10/10
Number of rotations 1.2 0.1 0.4 0.2 0.4 0.9

Time per run (s) 42 27 27 37 27 40

The proposed setup was tested in a couple of home-
like environments with a previous prototype of the Hobbit
robot (Fig.7). The robot safely navigated to predefined places
in most cases, even if some of them were quite close to
obstacles such as a table or an armchair. A summary of the
results is presented in III. These results are comparable to
those obtained with other more specific methods [18], but
longer term tests will be required. Also, we could see that
the localization results both in terms of error and uncertainty
can be notably improved by means of in place rotations (Fig.
8), which should facilitate recovery, as proposed in ROS.
The Locate User functionality was also succesfully tested,
although the user detection needs to be better adjusted to the
current settings.

Fig. 9 shows how using the top RGB-D camera for
obstacle avoidance makes navigation safer. In Fig. 10 the
path for avoiding a close-by obstacle can be observed. It
was followed by the robot without risk of collision. Fig. 11
shows the robot picking up an object from the floor.

Fig. 7. A previous prototype of the Hobbit robot (with the same sensor
configuration as described here) navigating between predefined places.

TABLE III
NAVIGATION BETWEEN PLACES. SUMMARY OF RESULTS.

Test Succes rate
Navigation between places not going through a door 20/20

Navigation between places going through a door 16/20

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an affordable system for domestic
robotic tasks including navigation, using RGB-D sensors and
the ROS framework. Improvements over existing solutions
and new specific functionalities were proposed and tested.

The configuration of the sensors allows the blind detection
area in front of the robot to be reduced. We focus on avoiding
and detecting obstacles lying on the floor, which are the most
common obstacles in indoor environments and the ones that
cause a higher risk of falling down. Obstacles like the narrow
stick used in [18] are detected only when the robot gets
closer, but we think that this is a minor drawback. There
will be no such obstacles in the given environments.

In future work, we will test if our set up can be easily
transferred to a different platform without much adaptation
work. More improvements will be required in order to make
navigation in narrow spaces more reliable. Further exper-
iments will be conducted in very challenging longer term
pilot studies and afterwards in real apartments. New recovery
behaviors may need to be implemented. We also plan to
incorporate semantic mapping capabilities into the system,
so that relevant places in each room can be recognized and
added autonomously.

Fig. 8. Localization improvements after rotation. Top: initially acceptable
pose estimate with high uncertainty. Bottom: initially incorrect pose (note
that the laser data do not match the actual wall, there is an important ori-
entation error) with intermediate uncertainty. Left: before rotation. Middle:
after one 360◦ rotation. Right: after two consecutive 360◦ rotations. The
improvements are qualitatively substantial.



Fig. 9. Left: using only the bottom RGB-D sensor (green measurements)
resulted in the robot colliding with a table and losing localization. Right:
when the top RGB-D sensor (white measurements), was used for obstacle
avoidance the robot stopped and would not go through the table. The thin
yellow lines were added for visualization purposes, to show where the real
table approximately is.

Fig. 10. Avoidance of a close-by obstacle remembered for a while.
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